Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3+4x-5`
`M(x)=P(x)+Q(x)`
`=5x^3-3x+7-5x^3+4x-5`
`=x+2`
`N(x)=P(x)-Q(x)`
`=5x^3-3x+7+5x^3-4x+5`
`=10x^3-7x+12`
b)Đặt `M(x)=0`
`<=>x+2=0`
`<=>x=-2`
Vậy M(x) có nghiệm `x=-2`
1k like đâu
a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)
\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)
a: \(P\left(x\right)=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b: \(M\left(x\right)=-x^2+2\)
\(N\left(x\right)=10x^3+x^2-8x+12\)
c: Đặt M(x)=0
=>2-x2=0
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
a) \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
b) \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)
\(N\left(x\right)=5x^3-4x+7-\left(-5x^3-x^2+4x-5\right)=10x^3+x^2-8x+12\)
a) Ta có: \(P\left(x\right)=5x^3-3x+7-x\)
\(=5x^3-4x+7\)
Ta có: \(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)
\(=-5x^3-x^2+4x-5\)
b) Ta có: M(x)=P(x)+Q(x)
\(=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
Ta có: N(x)=P(x)-Q(x)
\(=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
c) Đặt M(x)=0
\(\Leftrightarrow-x^2+2=0\)
\(\Leftrightarrow-x^2=-2\)
\(\Leftrightarrow x^2=2\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
a, \(P\left(x\right)=5x^3-3x+7-x\)
\(=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)
\(=-5x^3-x^2+4x-5\)
Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)
\(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)
b, \(P\left(x\right)+Q\left(x\right)=0\)
\(\Leftrightarrow-x^2+2=0\)
\(\Leftrightarrow-x^2=-2\)
\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)
\(\Rightarrow x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}\)
P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2
= -5x3 - x2 + 4x - 5
P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5
= -x2 + 2
P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5
= 10x3 + x2 - 8x + 12
Đặt H(x) = P(x) + Q(x)
=> H(x) = -x2 + 2
H(x) = 0 <=> -x2 + 2 = 0
<=> -x2 = -2
<=> x2 = 2
<=> x = \(\pm\sqrt{2}\)
Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)
`a)P(x)=5x^3-3x+7-x`
`=5x^3-3x-x+7`
`=5x^3-4x+7`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3-x^2+2x+2x-3-2`
`=-5^3-x^2+4x-5`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`=5x^3-5x^3-x^2-4x+4x+7-5`
`=-x^2+2`
`N(x)=5x^3-4x+7+5x^3+x^2-4x+5`
`=5x^3+5x^3+x^2-4x-4x+7+5`
`=10x^3+x^2-8x+12`
Đặt `M(x)=0`
`<=>-x^2+2=0`
`<=>2=x^2`
`<=>x=+-sqrt2`
a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)
\(=x+2\)
c. cho M(x)=0 \(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
vậy x=-2 là nghiệm của đa thức M(x)
tick mk với
a, P(x)=5x3+x2-3x+7
Q(x)=-5x3-x2+4x-5(đã thu gọn-bn tự trình bày nha)
b,P(x)=5x3+x2-3x+7
+
Q(x)=-5x3-x2+4x-5
M(x)= x-2
P(x)= 5x3 +x2 -3x+7
-
Q(x)=-5x3 - x2 + 4x-5
N(x)=10x3+2x2-7x+12
c, x-2=0
x=0+2
x=2
=>Nghiệm bằng 2.
a, \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
b, \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)
c, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
a: \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
b: Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
c: Đặt M(x)+2=0
\(\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a) P(x)=5x3 - 3x - x + 7
Q(x)=-5x3- x2 + 2x + 2x -3 - 2
b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x2 + 2x + 2x - 3 - 2 )
=5x3 - 3x - x + 7 - 5x3 - x2 + 2x + 2x - 3 - 2
=(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> M = -x2+2
P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)
= 5x3-3x-x+7+5x3-x2+2x+2x-3-2
=(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> N =10x3 -x2 +2
c)-x2+2=0
-x2=0+2
-x2=2
=>-x2=\(-\sqrt{2}\)
a) P(x) = 5x3 - 3x + 7 - x = 5x3 + (-3x - x) + 7 = 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + (2x + 2x) + (-3 - 2) - x2 = -5x3 + 4x - 5 -x2
b) M(x) = P(x) + Q(x)
* Tính P(x) + Q(x)
P(x) = 5x3 - 4x + 7
Q(x) = -5x3 - x2 + 4x - 5
P(x) + Q(x) = -x2 - 2
=> M(x) = -x2 - 2
N(x) = P(x) - Q(x)
Tính P(x) - Q(x)
P(x) = 5x3 - 4x + 7
Q(x) = -5x3 - x2 + 4x - 5
-------------------------------------------
P(x) - Q(x) = 10x3 + x2- 8x + 12
c) Để M(x) có nghiệm => -x2 + 2 = 0
Vì \(x^2\ge0\forall x\inℝ\Leftrightarrow-x^2< 0\forall\inℝ\)
=> \(-x^2+2< 2< 0\)
=> \(-x^2+2< 0\forall x\inℝ\)
Vậy không có nghiệm đa thức M(x)
* Phần câu c k chắc nx
P/S : Sửa lại cái đề nhé