\(4x^3+2x^2-2x+7-x^2-x\) và Q(x) =\(-4x^3+x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có bị lộn đề ko bạn

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

18 tháng 12 2017

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2

Đa thức có bậc là 5

g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2

Đa thức có bậc là 8.

Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.



19 tháng 7 2018

\(a,A\left(x\right)=2x+3\)

Có \(2x+3=0\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy \(-\frac{3}{2}\)là 1 nghiệm của đa thức A(x)

\(b,B\left(x\right)=4x^2-25\)

\(\Rightarrow B\left(x\right)=\left(2x\right)^2-25\)

Có \(B\left(x\right)=0\Rightarrow\left(2x\right)^2-25=0\)

\(\Rightarrow\left(2x\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x=5\\2x=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)

Vậy -5/2 là 1 nghiệm của B(x)

\(c,C\left(x\right)=x^2-7\)

Có \(C\left(x\right)=0\Leftrightarrow x^2-7=0\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x=\orbr{\begin{cases}\sqrt{7}\\-\sqrt{7}\end{cases}}\)

Vậy \(\sqrt{7};-\sqrt{7}\)là 2 nghiệm của C(x)

\(d,D\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)

\(D\left(x\right)=x-2x^2+2x^2-x+4\)

\(D\left(x\right)=4\)

Vậy D(x) vô nghiệm

19 tháng 7 2018

+) Ta có: A(x) = 2x + 3 = 0

(=) 2x = -3 

(=) x = \(\frac{-3}{2}\).

+) Ta có: B(x) = 4x2 -25 = 0

(=) 4x2 = 25

(=) (2x)2 = 52

=> 2x = 5

(=) x = \(\frac{5}{2}\).

25 tháng 4 2017

a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)

b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)