Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)
vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)
mà Ư(3)={-3;-1;1;3}
nên
2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3
=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2
=> n=-2 và n=-1 và n=0 và n=1
vậy nϵ{-2;-1;0;1}
b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)
mà \(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)
và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0
=> a=-1
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
Câu 1:
1:
a) Ta có: \(P=\dfrac{x^3-3}{x^2-2x-3}-\dfrac{2x-6}{x+1}+\dfrac{x+3}{3-x}\)
\(=\dfrac{x^3-3}{\left(x-3\right)\left(x+1\right)}-\dfrac{\left(2x-6\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x^3-3-2x^2+6x+6x-18-x^2-4x-3}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{x^3-3x^2+8x-24}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{\left(x-3\right)\left(x^2+8\right)}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{x^2+8}{x+1}\)
Câu 1:
a)
\(P=\frac{x^3-3}{(x+1)(x-3)}-\frac{2(x-3)^2}{(x+1)(x-3)}-\frac{(x+3)(x+1)}{(x-3)(x+1)}\)
\(=\frac{x^3-3-2(x-3)^2-(x+3)^2}{(x+1)(x-3)}\)
\(=\frac{x^3-3x^2+8x-24}{(x+1)(x-3)}=\frac{(x-3)(x^2+8)}{(x+1)(x-3)}=\frac{x^2+8}{x+1}\)
b) Với $x$ nguyên, để $P$ nguyên thì $\frac{x^2+8}{x+1}$ nguyên
Điều này xảy ra khi $x^2+8\vdots x+1$
$\Leftrightarrow x^2-1+9\vdots x+1$
$\Leftrightarrow (x-1)(x+1)+9\vdots x+1$
$\Leftrightarrow 9\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1;\pm 3;\pm 9\right\}$
$\Rightarrow x\in\left\{-2;0; -4; 2; -10; 8\right\}$ (đều thỏa mãn ĐKXĐ)
1. ĐKXĐ : \(x\ne\pm8\)
Ta có :
\(\frac{A}{x^2-64}=\frac{x}{x-8}\)
\(\Leftrightarrow\frac{A}{\left(x-8\right)\left(x+8\right)}=\frac{x}{x-8}\)
\(\Leftrightarrow A=\frac{x}{x-8}.\left(x-8\right)\cdot\left(x+8\right)\)
\(\Leftrightarrow A=x\left(x+8\right)\)
Vậy...
2/ \(A=\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)
Vậy...
3/ \(M=\frac{4}{x^2+4x+7}=\frac{4}{\left(x^2+4x+4\right)+3}=\frac{4}{\left(x+2\right)^2+3}\)
Với mọi x ta có :
\(\left(x+2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+3\ge3\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)^2+3}\le\frac{4}{3}\)
\(\Leftrightarrow M\le\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
Vậy....
5/ \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{1}{x-y}-\frac{1}{y-z}+\frac{1}{y-z}-\frac{1}{z-x}+\frac{1}{z-x}-\frac{1}{x-y}\)
\(=0\)
Vậy...
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.