Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a, h(x)=-4x+8
b, Tìm nghiệm của h(x) thì
h(x)=-4x+8=0\(\Rightarrow\)-4x=-8\(\Rightarrow\)x=2
H(x) = ( 3x^3 - x^3 - x^3 ) + ( 5x^2 - 5x^2 ) + ( - 5x + x ) + 8
= -4x + 8
N : -4x + 8 = 0
-4x = -8
x= 2
1a)\(M=-2x^3+2x^2y\)
b) \(M=6x^2+xy-x^3+4y^2\)
2a)\(P\left(x\right)+Q\left(x\right)=2x^2-2x\)
\(P\left(x\right)-Q\left(x\right)=4x^2+8x-4\)
Bài 1:
a/ Kết quả: f(x) - g(x) + h(x) = 2x - 1
(tự ghép cặp vào r` tính hoặc tính = hàng dọc nhé bn, muộn r` , mk k muốn đánh máy)
b/ 2x - 1 = 0
<=> 2x = 1
<=> x = \(\dfrac{1}{2}\)
Vậy x = .... để f(x) - g(x) + h(x) = 0
Bài 2:
a/ dễ --> tự lm cko quen để đỡ mất căn bản nhé bn!
b/ sửa: g(x) = ..... + 2x3 + 3x
Làm: kết quả: 3x2 + 7x (ns chung là lười nên mk k muốn đánh máy, k hiểu thì ib lại vs mk)
c/ h(x) = 3x2 + 7x = 0
<=> x(3x + 7) = 0
<=> \(\left[{}\begin{matrix}x=0\\3x+7=0\Rightarrow3x=-7\Rightarrow x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy đa thức h(x) có 2 no là:....(tự ghi)
a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)
\(=x+2\)
c. cho M(x)=0 \(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
vậy x=-2 là nghiệm của đa thức M(x)
tick mk với
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a) P(x) - Q(x) = \(3x^2+x-2-2x^2-x+3=x^2+1\)
b) \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2+1\) = 0
Vì \(x^2\ge0\Leftrightarrow x^2+1>0\)
=> \(H\left(x\right)=0\) vô nghiệm