Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)
\(g\left(x\right)=x^4+x^3+2x^2\)
b: Hệ số tự do của f(x) là 0 và g(x) là 0
Hệ số cao nhất của f(x) là 1
Hệ số cao nhất của g(x) là 1
c: Bậc của f(x) là 4
Bậc của g(x) là 4
`1)`
`A(x)=x^3-2x^2+5x-2-x^3+x+7`
`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`
`A(x)=-2x^2+6x+5`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Hệ số tự do: `5`
`2)`
`H(x)-(2x^2 + 3x – 10) = A(x)`
`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`
`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`
`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`
`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`
`H(x)=9x-5`
`3)`
Đặt `9x-5=0`
`9x=0+5`
`9x=5`
`-> x=5/9`
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
bài 3:
a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5
= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5
= 7x4+2x3+2x2-x+5
g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3
=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5
= 7x4+x3+x2+x+5
b) h(x)=f(x)-g(x)
=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)
=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5
=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)
=x3+x2-2x
Bài 4:
a) f(x)=5x4+x3-x+11+x4-5x3
=(5x4+x4)+(x3-5x3)-x+11
=6x4-4x3-x+11
g(x)=2x3+3x4+9-4x3+2x4-x
=(3x4+2x4)+(2x3-4x3)-x+9
=5x4-2x3-x+9
b) h(x)=f(x)-g(x)
=(6x4-4x3-x+11)-(5x4-2x3-x+9)
=6x4-4x3-x+11-5x4-2x3-x+9
=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)
= x4-6x3-2x+20
c) Với x = -2
Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0
Vậy x = -2 không phải là nghiệm của đa thức h(x)
đúng thì tặng 1 tick cho mk nk các pn!!!
Lời giải:
a.
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$
$=x^3+4x^2-4x-1$
b.
Hệ số tự do: $-1$
Bậc $f(x)$: 3
1: Sửa đề: \(f\left(x\right)=3x\left(1-3x+2x^3\right)-2x^2\left(-4+3x^2-x\right)\)
\(=3x-9x^2+6x^4+8x^2-6x^4+2x^3\)
\(=2x^3-x^2+3x\)
\(g\left(x\right)=-4\left(x^4+x^2+1\right)+x^3\left(4x+2\right)+4\)
\(=-4x^4-4x^2-4+4x^3+2x^3+4\)
\(=2x^3-4x^2\)
Bậc là 3
Hệ số cao nhất là 2
Hệ số tự do là 0
2: f(x)=g(x)+h(x)
=>h(x)=f(x)-g(x)
\(=2x^3-x^2+3x-2x^3+4x^2=3x^2+3x\)
3: Đặt h(x)=0
=>3x(x+1)=0
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
1. `G(x)=-4(x^4+x^2+1)+x^3(4x+2)+4`
`=-4x^4-4x^2-4+4x^4+2x^3+4`
`=(4x^4-4x^4)+2x^3-4x^2+(4-4)`
`=2x^3-4x^2`
Bậc 3
Hệ số cao nhất: 2
Hệ số tự đó: 0
2. `F(x) = G(x) + H(x)`
`=>H(x)=F(x) - G(x)`
`=>H(x)=[3x(1-3x+2x^3)-2x^2(-4+3x^2-x)]-(2x^3-4x^2)
`=>H(x)=3x-9x^2+6x^4+8x^2-6x^4+2x^3-2x^3+4x^2`
`=>H(x)=3x^2+3x`
3. `H(x)=3x^2+3x=0`
`=>3x(x+1)=0`
TH1: `x=0`
TH2: `x+1=0=>x=-1`