Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x) = g(x)
\(-3x^2+2x+1=-3x^2+x-2\Leftrightarrow x=-3\)
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
\(\left\{\begin{matrix}f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\left(1\right)\\g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)
Sắp xếp số mũ của (ẩn theo một trình tự, Thường, nên giảm dần"
Tính f(x)+g(x) lấy (1) cộng (2)
\(f\left(x\right)+g\left(x\right)=\left(1-1\right)x^5+\left(7+5\right)x^4+\left(-9-2\right)x^3+\left(-2+4\right)x^2+\left(-\dfrac{1}{4}\right)x+\left(-\dfrac{1}{4}\right)\)
\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
Tính f(x)-g(x) lấy (1) trừ (2)
\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
Bạn cho 2 cái biểu thức bằng nhau rồi giải ra thì sẽ được x=-3 nha!
\(f\left(x\right)=g\left(x\right)\)
\(\Rightarrow-3x^2+2x+1=-3x^2-2+x\)
\(\Rightarrow2x+1=-2+x\)
\(\Rightarrow2x=-3+x\)
\(\Rightarrow x=-1,5+\frac{1}{2}x\)
\(\Rightarrow\frac{1}{2}x=-1,5\Rightarrow x=-3\)
Có:
\(-3x^2+2x+1=-3x^2-2+x\)
\(\Rightarrow2x+1=-2+x\)
\(\Rightarrow2x-x=-2-1\)
\(\Rightarrow x=-3\)
Ta có
-3x2+2x+1= -3x2-2+x
(-3x2+3x2)+(2x-x)= -1-2
Suy ra x=-3
Answer:
Ta có `f(x)=g(x)`
`<=>-3x^2+2x+1=-3x^2-2+x`
`<=>-3x^2+3x^2+2x-x=-2-1`
`<=>x=-3`
Vậy khi `x=-3<=>f(x)=g(x)`