Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)
\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)
`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)
\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)
`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)
\(=-2x^5-2x^4-3x^3-3x^2-x-4\)
a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5
= x2 + 2x + 1 (0.5 điểm)
B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
F(x) = 2x5 + 3x3 - 4x4 + 5x - x2 + x3 + x1
F(x) = 2x5 -4x4 + ( 3x3 + x3 ) -x2 + ( 5x+x)
F(x) = 2x5 - 4x4 + 4x3 - x2 + 6x
G(x) = -x2 - x5 + 2x4 - 3x3 + x4 +7
G(x) = -x5 + ( 2x4 + x4) -x2 +7
G ( x) = -x5 + 3x4 -x2 +7
a,F(x)= 2x\(^5\) + 3x\(^3\) - 4x\(^4\) + 5x - x\(^2\) + x\(^3\) + x\(^1\)
=2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\)
G(x)= -x\(^2\) - x\(^5\) + 2x\(^4\) - 3x\(^3\) + x\(^4\) + 7
=\(-x^5\)\(+3x^4\)\(-3x^3\)\(-x^2\)+7
b,F(x)-G(x)=(2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\))-\((-x^5+3x^4-3x^3-x^2+7)\)
=\(2x^5-4x^4+4x^3-x^2+6x\) \(+x^5-3x^4\)\(+3x^3\)\(+x^2-7\)
=\(\left(2x^5+x^5\right)\)+\(\left(-4x^4-3x^4\right)\)+\(\left(4x^3+3x^3\right)\)\(\left(-x^2+x^2\right)\)+6x-7
=\(3x^5-7x^4\)\(+7x^3+6x-7\)
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
a. \(A=x^5-3x^3+x^2-x^3-3+2x=x^5-4x^3+x^2+2x-3\)
\(B=x^4-3x-2+5x^2-3x^4+2x^5=2x^5-2x^4+5x^2-3x-2\)
b. \(A+B=x^5-4x^3+x^2+2x-3+2x^5-2x^4+5x^2-3x-2\)
\(=3x^5-2x^4-4x^3+6x^2-x-5\)
lũy thừa giảm dần hay tăng dần v ạ