Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$
$=6x^5-2x^4-4x^3+3x$
$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$
$=-6x^5+2x^4+4x^3+4x^2-3x-1$
b)
$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$
$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$
$=213$
c)
$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=4x^2-1$
$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=12x^5-4x^4-8x^3-4x^2+6x+1$
d)
$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$
$\Leftrightarrow x=\pm \frac{1}{2}$
Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$
Ta có :
A(x) = 3x - 2x2 - 2 +6x2 = 4x2 + 3x - 2
B(x) = 3x2 - x - 2x3 + 4 = -2x3 + 3x2 - x + 4
C(x) = 1 + 4x3 - 2x = 4x3 - 2x + 1
⇒ A(x) + B(x) - C(x)
= (4x2 + 3x - 2) + (-2x3 + 3x2 - x + 4) - (4x3 - 2x + 1)
= 4x2 + 3x - 2 - 2x3 + 3x2 - x + 4 - 4x3 + 2x - 1
= 7x2 + 4x + 1 - 6x3 = -6x3 + 7x2 + 4x + 1
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a,
Trước khi sắp xếp ta thu gọn các đa thức trên
P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x
=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)
=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)
=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến
P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
b,Tính
+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))
=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)
=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
c,
Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0
=3.0+0-0-0
=0(thỏa mãn)
Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)
=3.0+0-4.0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=-\(\dfrac{1}{4}\)(vô lí)
Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)
Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)
B(x)=\(x^4+4x^3+4x^2+5x+11\)
b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)
N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)
c, Thay x=2 vào N(x) ta được
N(2)=0 Vậy 2 là nghiệm của đt N(x)
Thay x=2 vào M(x) ta được
M(2)=.... \(\ne\)0(tự tính nha)
Vậy.............
1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
2) \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
+
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
-
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)
Bạn thay 0 vào rồi ra P(0) = 0 và Q(0) = -1/4
=> x = 0 là nghiệm của P(x) nhưng ko là nghiệm của Q(x)
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
ơ?! Nãy em đã nháp r nhưng ra x = -1 ko phải là nghiệm của P(x) nên em bỏ :)) hình như đề bài của chị khác vs đề bài của bạn ý :> A(x) lm j có x² đâu ạ?
Miyuki Misaki chết mình nhìn 3^2 với 7^2 ra 3x^2 với 7x^2 nhưng mình nghĩ như vậy nó ms ra đc chứ nhỉ?