Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(x)=x^4-x^3-3x^2+2
B(x)=x^4+3x^2+5
b: A(x)+B(x)=2x^4-x^3+7
c: B(x)=x^2(x^2+3)+5>0
=>B(x) ko có nghiệm
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
P(x) = \(-x^4-5x^3-6x^2+5x-1\)
Q(x) = \(x^4+5x^3+6x^2-2x+3\)
M(x) = P(x) + Q(x)
\(-x^4-5x^3-6x^2+5x-1\)
+
\(x^4+5x^3+6x^2-2x+3\)
------------------------------------
\(3x+2\)
Vậy : M(x) = 3x + 2
Nghiệm của M(x) : 3x + 2 = 0
3x = -2
x = \(-\dfrac{2}{3}\)
a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)
\(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)
\(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)
\(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)
b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)
Vậy \(M\left(x\right)=3x+2\)
Cho \(M\left(x\right)=0\)
hay \(3x+2=0\)
\(3x\) \(=0-2\)
\(3x\) \(=-2\)
\(x\) \(=-2:3\)
\(x\) \(=\dfrac{-2}{3}\)
Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
a, \(P(x)=3x^4+x^2-3x^4+5\\ = (3x^4-3x^4)+x^2+5\\ = x^2+5\)
b, \(P(0)=0^2+5=5\\ P(-3)=(-3)^2+5=-9+5=-4\)
c, Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5
Hay P(x) > 5
Vậy P(x) không có nghiệm
Lời giải:
a.
$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$
$=2x^4-4x^3+2x^2-x+1$
b)
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$
$P(1)=2-4+2-1+1=0$
c.
$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$
$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$
a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)
\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)
\(=3x^4-5x^3-x^2+x-5\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)
\(=x^4-x^3-x-1\)
b) \(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)
\(=5x^4-6x^3-x^2-6\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)
\(=2x^4-4x^3-x^2+2x-4\)