Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)
b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
\(a,P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\left(x\ne\pm3;x\ne-2\right)\\ P=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\\ P=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x}{x-3}\\ b,x^2-7x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow x=4\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{3\cdot4}{4-3}=12\\ c,P=\dfrac{3\left(x-3\right)+9}{x-3}=3+\dfrac{9}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;4;6;12\right\}\)
a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)
=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)
=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)
=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)
b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)
\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)
\(\Leftrightarrow\frac{x-3}{x-2}>0\)
\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)
\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)
Vậy ...
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
B xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow}x\ne\pm3\)
Vậy B xác định \(\Leftrightarrow x\ne\pm3\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{5x-15+3x+9-5x-3}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3}{x+3}\)
a: Khi x=5 thì A=5/(5+3)=5/8
b: \(C=A+B=\dfrac{x}{x+3}+\dfrac{2}{x-3}+\dfrac{3-5x}{x^2-9}\)
\(=\dfrac{x^2-3x+2x+6+3-5x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: Để C nguyên thì x+3-6 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;0;-6;-9\right\}\)