Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)
\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Học tốt!!!!!!!!!!!!!!!!
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
Theo đề bài thì ta có:
\(ah_a=bh_b=ch_c=2\)
Ta có:
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)
\(=\left(2+2+2\right)^2=36\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\)
Câu a:
Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$
Từ $I$ hạ đường cao $ID, IE, IF$ xuống lần lượt cạnh $BC,CA,AB$
Ta có:
\(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}=\frac{ID.BC}{2}+\frac{IE.AC}{2}+\frac{IF.AB}{2}\)
\(=\frac{r.BC}{2}+\frac{r.AC}{2}+\frac{r.AB}{2}=\frac{r(AB+BC+AC)}{2}=\frac{r(a+b+c)}{2}\)
Ta có đpcm.
Câu c:
Ta có: \(h_a^2+h_b^2+h_c^2=\left(\frac{2S}{a}\right)^2+\left(\frac{2S}{b}\right)^2+\left(\frac{2S}{c}\right)^2\)
\(=4S^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\geq 4S^2.\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) ( BĐT AM-GM dạng \(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) )
\(\geq 4S^2.\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2=\frac{108S^2}{(a+b+c)^2}(*)\) (áp dụng BĐT Cauchy-Schwarz)
Mặt khác:
Theo kết quả phần a: \(r=\frac{2S}{a+b+c}\Rightarrow 27r^2=\frac{108S^2}{(a+b+c)^2}(**)\)
Từ \((*);(**)\rightarrow h_a^2+h_b^2+h_c^2\geq 27r^2\) (đpcm)
Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)
\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)
Áp dụng bất đẳng thức bunhiacopski ta có :
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)
Dấu "=" xảy ra khi tam giác ABC đều
Kí hiệu \(S,p,r\) lần lượt là diện tích, nửa chu vi và bán kính đường tròn nội tiếp của tam giác \(ABC.\) Theo công thức tính diện tích tam giác ta có \(S=pr=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c.\) Từ đó suy ra, bất đẳng thức cần chứng minh tương đương với
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{4r^2}.\) Đặt \(x=p-a,y=p-b,z=p-c\) thì \(x,y,z\) là các số dương và ta có
\(a=y+z,b=z+x,c=x+y,r=\sqrt{\frac{xyz}{x+y+z}}.\) Thành thử bất đẳng thức tương đương với
\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{x+y+z}{4xyz}.\) Để chứng minh điều này ta sử dụng bất đẳng thức đơn giản: \(\left(a+b\right)^2\ge4ab\) với mọi \(a,b\). Khi đó
\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{1}{4xy}+\frac{1}{4yz}+\frac{1}{4zx}=\frac{x+y+z}{4xyz}.\) (ĐPCM).