Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi (H) là lăng trụ đứng tam giác đều ABC.A'B'C'
Ta có thể tích khối lăng trụ ABC.A'B'C' là:
V = A A ' . S A B C = a . a 2 3 4 = a 3 3 4
Chọn A.
Do tam giác ABC đều có cạnh bằng a 3 nên
S A B C = a 3 2 . 3 4 = 3 a 2 3 4
Tam giác A'BC vuông tại A nên:
A ' B 2 = A A ' 2 + A B 2 ⇒ A A ' = A ' B 2 - A B 2 = 3 a 2 - a 3 2 = a 6
Vậy
V A B C . A ' B ' C ' = A A ' . S A B C = a 6 . 3 a 2 3 4 = 9 2 a 3 4
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)
Ta chia khối lẳng trụ đã cho thành hình chóp A’.ABC, C.A’B’C’ và C.A’BB’
Ta có: VA’.ABC = VA’B’C’ = trong đó S là diện tích đáy S = SABC = SA’B’C’ và h là chiều cao của hình lăng trụ
Lại có: VABC.A’B’C’ = S.h
Do đó,
Trong đó, tam giác ABC là tam giác đều có độ dài cạnh bằng a nên
Vì đây là hình lăng trụ đứng nên h = AA’ = BB’= CC’ = a.
Vậy thể tích hình chóp C.A’BB’ là:
Chọn C.
Để ý rằng diện tích tam giác đều cạnh a bằng a 3 3 4