Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.
A B C h d
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :
\(5x-y-7=0\)
Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)
Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :
\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)
Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)
Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
A 2 y -2 -2 4 B C x
Vì G là trọng tâm tam giác ABC, nên ta có :
\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)
\(\Leftrightarrow A\left(0;2\right)\)
Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)
Vì M là trung điểm của BC, nên ta có :
\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)
Vậy \(C\left(2-x_1;-2-y_1\right)\)
Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)
Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)
\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)
\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\) (1)
Do AB = AC nên \(AB^2=AC^2\)
\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)
\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)
\(\Leftrightarrow x_1=3y_1+4\) (2)
Thay (2) vào (1) ta có :
\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)
Từ đó ta có :
\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)
Tóm lại ta có :
\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm
(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)
Vì G là trọng tâm của tam giác ABC nên ta có :
\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)
\(\Leftrightarrow A\left(0;2\right)\)
Ta thấy MA có hệ số góc
\(k=\frac{2-\left(-1\right)}{0-1}=-3\)
Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :
\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)
Mặt khác do :
\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)
Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)
\(\left(x-1\right)^2+\left(y+1\right)^2=10\)
Vậy tọa độ của B, C là nghiệm của hệ phương trình :
\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)
Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)
Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm
Không gian mẫu: \(C_{2n}^3\)
Đa giác đều 2n đỉnh có n đường chéo đi qua tâm O
Chọn 1 đường chéo có n cách
Chọn 1 điểm kết hợp với đường chéo tạo thành tam giác vuông (nội tiếp chắn nửa đường tròn): có \(2n-2\) cách
\(\Rightarrow n\left(2n-2\right)\) tam giác vuông
Xác suất: \(P=\dfrac{n\left(2n-2\right)}{C_{2n}^3}=\dfrac{1}{13}\Rightarrow26n\left(n-1\right)=C_{2n}^3\)
\(\Rightarrow26n\left(n-1\right)=\dfrac{n.\left(2n-1\right)\left(2n-2\right)}{3}\)
\(\Rightarrow n^2-21n+20=0\Rightarrow\left[{}\begin{matrix}n=1\left(loại\right)\\n=20\end{matrix}\right.\)