Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y O A B H
a) Vì OH là tia phân giác của góc AOB
nên góc AOH = BOH.
Xét ΔAOH và ΔBOH có:
OA = OB (GT)
Góc AOH = BOH ( chứng minh trên)
OH chung.
=> ΔAOH = ΔBOH ( c.g.c) → ĐPCM.
b) Do ΔAOH = ΔBOH ( theo câu a)
nên AH = BH ( 2 cạnh tương ứng ) và góc OHA = OHB ( 2 góc tương ứng)
mà OHA + OHB = 180 độ ( kề bù )
=> OHA = OHB = 180: 2 = 90 độ
Do đó OH vuông góc với AB → ĐPCM.
a: Xét ΔAOH và ΔBOH có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
OH chung
Do đó: ΔAOH=ΔBOH
b: Ta có: ΔAOH=ΔBOH
nên HA=HB
Ta có: ΔOAB cân tại O
mà OH là đường phân giác
nên OH là đường cao
a: Xét ΔAOH và ΔBOH có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
OH chung
Do đó: ΔAOH=ΔBOH
b: Ta có: ΔAOH=ΔBOH
nên HA=HB
Ta có: ΔOAB cân tại O
mà OH là đường phân giác
nên OH là đường cao
Ta có hình vẽ:
x O y A B H a/ Xét tam giác AOH và tam giác BOH có:
OH: cạnh chung
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
OA = OB (GT)
Vậy tam giác AOH = tam giác BOH (c.g.c)
b/ Ta có: tam giác AOH = tam giác BOH (câu a)
=> AH = BH (2 cạnh tương ứng)
=> \(\widehat{AHO}\)=\(\widehat{BHO}\) (2 góc tương ứng)
Mà \(\widehat{AHO}\)+\(\widehat{BHO}\)=1800 (kề bù)
=> \(\widehat{AHO}\)=\(\widehat{BHO}\)=900
=> OH \(\perp\)AB (đpcm)
a/ Xét ΔAOH và ΔBOH có:
OA = OB ( giả thiết)
OH: cạnh chung
\(\widehat{AOH}=\widehat{BOH}\) ( vì OH là tia phân giác của \(\widehat{\text{xOy}}\))
=> ΔAOH = ΔBOH ( c.g.c)
b/ Theo phần a, ta có: ΔAOH = ΔBOH
=> AH = BH ( 2 cạnh tương ứng )
c/ Theo phần a, ta có: ΔAOH = ΔBOH
=> \(\widehat{AHO}=\widehat{BHO}\)
Lại có: \(\widehat{AHO}+\widehat{BHO}=180^o\)
=> \(\widehat{AHO}=\widehat{BHO}=90^o\)
=> \(OH\perp AB\left(đpcm\right)\)
a: Xét ΔAOH và ΔBOH có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
OH chung
Do đó: ΔAOH=ΔBOH
b: Ta có: ΔAOH=ΔBOH
nên HA=HB
Ta có: ΔOAB cân tại O
mà OH là đường phân giác
nên OH là đường cao
Lời giải:
a)
Xét tam giác $OMA$ và $OMB$ có:
$\widehat{OAM}=\widehat{OBM}=90^0$
$OM$ chung
$\widehat{O_1}=\widehat{O_2}$ (do $Oz$ là tia phân giác $\widehat{xOy$)
$\Rightarrow \triangle OMA=\triangle OMB$ (ch-gn)
b)
Từ tam giác bằng nhau ở phần $a$ suy ra $\widehat{OMA}=\widehat{OMB}$
Lại có: $\widehat{AMD}=\widehat{BMC}$ (đối đỉnh)
$\Rightarrow \widehat{OMA}+\widehat{AMD}=\widehat{OMB}+\widehat{BMC}$
$\Leftrightarrow \widehat{OMD}=\widehat{OMC}$
Xét tam giác $OMD$ và $OMC$ có:
$OM$ chung
$\widehat{O_1}=\widehat{O_2}$
$\widehat{OMD}=\widehat{OMC}$
$\Rightarrow \triangle OMD=\triangle OMC$ (g.c.g)
$\Rightarrow OD=OC$
c)
Kéo dài $OM$ cắt $CD$ tại $K$
Xét tam giác $DOK$ và $COK$ có:
$\widehat{O_1}=\widehat{O_2}$
$OD=OC$ (cmt)
$OK$ chung
$\Rightarrow \triangle DOK=\triangle COK$ (c.g.c)
$\Rightarrow \widehat{OKD}=\widehat{OKC}$
Mà $\widehat{OKD}+\widehat{OKC}=180^0$
$\Rightarrow \widehat{OKD}=\widehat{OKC}=90^0$
$\Rightarrow OK\perp CD$ hay $OM\perp CD$
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
Suy ra: OA=OB
hay ΔOBA cân tại O
mà \(\widehat{AOB}=60^0\)
nên ΔOAB đều
b: Xét ΔOBD vuông tại B và ΔOAC vuông tại A có
OB=OA
\(\widehat{BOD}\) chung
Do đó: ΔOBD=ΔOAC
Suy ra: OD=OC
Xét ΔMAD vuông tại A và ΔMBC vuông tại B có
AD=BC
\(\widehat{ADM}=\widehat{BCM}\)
Do đó: ΔMAD=ΔMBC
Suy ra: MD=MC
hay ΔMDC cân tại M
Xét ΔOCD có OC=OD
nên ΔOCD cân tại O
mà \(\widehat{DOC}=60^0\)
nên ΔOCD đều
c: Xét ΔODC có
OA/AD=OB/BC
Do đó: AB//CD