Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Gọi H là giao điểm của OI và AB
a/ Xét tam giác AOI và tam giác BOI có
-AOI = BOI (vì Oz là phân giác góc O)
-OI: cạnh chung
-OA = OB (GT)
Vậy tam giác AOI = tam giác BOI (c.g.c)
b/ Ta có: tam giác AOI = tam giác BOI (câu a)
=> AH = BH ( 2 cạnh tương ứng)
Xét tam giác AOH và tam giác BOH có
-OH: cạnh chung
-AH = BH
-OA = OB (GT)
Vậy tam giác AOH = tam giác BOH (c.c.c)
=> AHO = BHO ( 2 góc tương ứng) (1)
Mà AHO + BHO = 1800 (kề bù) (2)
Từ (1), (2) => AHO = BHO = 900
=> AB \(\perp\)OI
Vậy AB vuông góc với OI (đpcm)
hình,giả thiết, kết luận tự làm
chứng minh
a) xét tam giác AOI và tam giác BOI, ta có :
OI là cạnh chung
OA = OB
góc BOI =góc AOI
=> tam giác AOI= tam giác BOI (c-g-c)
b) gọi M là giao điểm của AB và OI
xét tam giác OAM và tam giác OBM, ta có ;
OM là cạnh chung
OA =OB
góc OAM =góc OBM
=> tam giác OAM = tam giác OBM 9 (c-g-c)
=>góc OMA = góc OMB ( cặp góc tương ứng )
mà góc OMA + góc OMB = 180 độ
=> góc OMA = góc OMB = 90 độ (đpcm)
O y x B A z I H 1 2
GT : \(\widehat{xOy};\) \(\widehat{O_1}=\widehat{O_2}\); OA= OB
\(I\in z\left(I\ne O\right)\);
b, AB cắt Oz tại H
KL : a, Tam giác OAI = tam giác OIB
b, HA = HB
c, AB \(\perp\)Oz
x O y A B H 1 2 1 2
Giải:
a) Xét \(\Delta AOH,\Delta BOH\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(=\frac{1}{2}\widehat{O}\right)\)
\(OH\): cạnh chung
\(\Rightarrow\Delta AOH=\Delta BOH\left(c-g-c\right)\) ( đpcm )
b) Vì \(\Delta AOH=\Delta BOH\)
\(\Rightarrow AH=BH\) ( cạnh t/ứng ) ( đpcm )
\(\widehat{H_1}=\widehat{H_2}\) ( góc t/ứng )
Mà \(\widehat{H_1}+\widehat{H_2}=180^o\) ( kề bù )
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=90^o\)
\(\Rightarrow OH\perp AB\) ( đpcm )
Vậy...
x O y A B H 1 2 1 2
a)
Xét \(\Delta AOH\) và \(\Delta BOH\) có :
OA = OB ( gt )
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
Chung OH
=> \(\Delta AOH\) = \(\Delta BOH\)
Hình bạn tự vẽ nha
Xét \(\Delta AIO\) và \(\Delta BIO\) có:
OI chung
\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))
OA = OB (gt)
\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)
b) Vì \(\Delta AIO = \Delta BIO\) (cmt)
\(\Rightarrow IB=IA\) (2 cạnh tương ứng)
mà OA = OB (gt)
\(\Rightarrow OI\) là đường trung trực của AB
hay \(AB \perp OI\)
a) Xét hai tam giác AOC va BOC, có:
OA=OB(gt)
góc OAC= góc COB
OC cạnh chung
=> Tam giác OAC= Tam giác OBC(c.g.c)
b) Vì ai tam giác OAC và OBC bằng nhau( theo câu a)
=> AC=BC
Tương tự ta có:
Góc ACO= góc BCO
=> CO là tia phân giác của góc ACB
c) Vì: góc OCA= OCB( theo câu b) Và góc ACF= ECB( góc đối đỉnh) => ACO+ACF= OCB+BCE
=> Goc OCF= OCE
Xét ai tam giác FOC và EOC có:
góc FOC= EOC
OC là canh chung
OCF= OCE
=> tam giác FOC= tam giác EOC(g.c.g)
=> OF= OE