Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B A' B' x y M' N' M N
Lấy A' đối xứng với A qua Ox, B' đối xứng với B qua Oy
Nối A'B' cắt Ox và Oy lần lượt tại M' và N'
Vì A' đối xứng với A qua Ox nên Ox là đường trung trực của AA', do đó MA = MA'
Tương tự NB = NB'
Ta có: AM + MN + BN = A'M + MN + B'N = A'MNB'
Ta thấy đường gấp khúc \(A'MNB'\ge A'B'\)(vì A và B nằm ở miền trong của \(\widehat{xOy}\)) Dấu bằng xảy ra khi M trùng M' và N trùng N'
Vậy Min (AM + MN + BN) = A'B' khi M trùng M' và N trùng N' là giao điểm của A'B' với các tia Ox và Oy
#)Giải :
a) Xét \(\Delta ABM\)và \(\Delta ADN\)có :
\(\widehat{ABM}=\widehat{ADN}\left(=90^o\right)\)
\(A=A\)( T/chất hình vuông ABCD )
\(\widehat{BAM}=\widehat{DAN}\)
\(\Rightarrow\Delta ABM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow AM=AN\)( cặp cạnh tương ứng bằng nhau )
\(\Rightarrow\Delta AMN\)cân tại A
Mà \(\widehat{MAN}=90^o\)
\(\Rightarrow\Delta AMN\)vuông cân
x O y M N B A N' M'
Gọi M' , N' lần lượt là các điểm đối xứng của M và N qua Ox và Oy , suy ra M', N' cố định
Khi đó ta có : AM = AM' , BN = BN'
=> AM + AB + BN = AM' + AB + BN ' \(\ge\)M'N' (hằng số)
Vậy AM + AB + BN đạt giá trị nhỏ nhất bằng M'N' khi A,B lần lượt là giao điểm của M'N' với Ox và Oy