Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
x O y A z B M H K
Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:
\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )
OM: cạnh chung
\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )
\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)
\(\Rightarrow OA=OB\) ( cạnh t/ứng )
\(\Rightarrow MA=MB\) ( cạnh t/ứng )
b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )
Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )
Mà \(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)
\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)
Xét \(\Delta HOM,\Delta KOM\) có:
\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)
OM: cạnh chung
\(\widehat{HMO}=\widehat{OMK}\) ( cmt )
\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)
\(\Rightarrow MH=MK\) ( cạnh t/ứng )
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác OBMA có
OB//MA
MB//OA
Do đó: OBMA là hình bình hành
mà OM là phân giác
nên OBMA là hình thoi
=>OA=OB
b: Xét ΔOMH vuông tại H và ΔOMK vuông tại K có
OM chung
\(\widehat{HOM}=\widehat{KOM}\)
Do đó: ΔOMH=ΔOMK
Suy ra MH=MK
c: Ta có: ΔOAB cân tại O
mà OM là đường phân giác
nên OM là trung trực của AB
Lời giải:
Vì $Oz$ là phân giác của góc \(\widehat{xOy}\) nên \(\widehat{xOz}=\widehat{yOz}\) hay \(\widehat{HOM}=\widehat{KOM}\)
Lại có: \(\widehat{OMH}=180^0-\widehat{OHM}-\widehat{HOM}=90^0-\widehat{HOM}\)
\(\widehat{OMK}=180^0-\widehat{OKM}-\widehat{KOM}=90^0-\widehat{KOM}\)
Mà \(\widehat{HOM}=\widehat{KOM}\) nên \(\widehat{OMH}=\widehat{OMK}\)
Xét tam giác $HOM$ và $KOM$ có:
\(\left\{\begin{matrix} \widehat{HOM}=\widehat{KOM}\\ \text{OM chung}\\ \widehat{OMH}=\widehat{OMK}\end{matrix}\right.\)
\(\Rightarrow \triangle HOM=\triangle KOM(g.c.g)\)
\(\Rightarrow MH=KM\) (đpcm)