Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét \(\Delta OAD\)và \(\Delta OBC\)
OA = OB (giả thiết)
góc O chung
OD = OC (giả thiết)
\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBC (c.g.c)
Vì tam giác OAD = OBC \(\Rightarrow\)góc OAD=OBC (2 góc tương ứng)
\(\Rightarrow\)Góc CAD=góc CBD.
a: Xét ΔOAD và ΔOCB có
OA=OC
ˆOO^ chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
a. Xét ΔOADvà ΔOCB:
Ta có: ˆO góc chung
OC=OA
CD=AB (OC=OA và OD=OB)
Vậy ΔOAD = ΔOCB (c.g.c)
Vậy ˆODA=ˆOBC (góc tương ứng)
Xét ΔABC và ΔCDA:
Ta có:
AC cạnh chung
ˆODA=ˆOBC
CD=AB (OC=OA và OD=OB)
Vậy ΔABC = ΔCDA(g.c.g)
a, xét tma giác OAD và tam giác OBC có: góc O chung
OA = ob (Gt)
OC = OD (gt)
=> tam giác OAD = tam giác OBC (c-g-c)
b, tam giác OAD = tam giác OBC (câu a)
=> AD = BC (đn) (1)
OA = OB (gt)
OC = OD (gt)
AC = OC - OA
BD = OD - OB
=> AC = BD
xét tam giác BCD và tam giác ACD có: CD chung
(1)
=> tam giác BCD = tam giác ACD (c-c-c)
=> góc CAD = góc CBD (Đn)