Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác BOM và tam giác AOM :
Có: OA = OB ( gt )
BOM = AOM ( gt )
OM chung
=> Tam giác BOM = Tam giác AOM ( c-g-c )
=> OAM = OBM ( 2 góc tương ứng )
b/ Xét tam giác AOC và tam giác BOD :
có: OAM = OBM ( CMT )
OA = OB ( gt )
O chung
=> Tam giác AOC = Tam giác BOD ( g-c-g )
=> OC = OD ( 2 cạnh tương ứng )
c/ Xét tam giác CIO và tam giác DIO:
có: IC = ID ( gt )
OC = OD ( CMT )
OI chung
=> Tam giác CIO = Tam giác DIO ( c-c-c )
=> IOC = IOD ( 2 góc tương ứng )
=> OI là phân giác góc O
mà OM là phân giác góc O ( gt )
=> OI trùng với OM
=> O,M,I thẳng hàng.
( TRY HARD TO STUDY, BRO ! )
Bài làm
a/ Xét tam giác BOM và tam giác AOM :
Có: OA = OB ( gt )
BOM = AOM ( gt )
OM chung
=> Tam giác BOM = Tam giác AOM ( c-g-c )
=> OAM = OBM ( 2 góc tương ứng )
b/ Xét tam giác AOC và tam giác BOD :
có: OAM = OBM ( CMT )
OA = OB ( gt )
O chung
=> Tam giác AOC = Tam giác BOD ( g-c-g )
=> OC = OD ( 2 cạnh tương ứng )
c/ Xét tam giác CIO và tam giác DIO:
có: IC = ID ( gt )
OC = OD ( CMT )
OI chung
=> Tam giác CIO = Tam giác DIO ( c-c-c )
=> IOC = IOD ( 2 góc tương ứng )
=> OI là phân giác góc O
mà OM là phân giác góc O ( gt )
=> OI trùng với OM
=> O,M,I thẳng hàng.
1: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: \(\widehat{OAM}=\widehat{OBM}\)
2: Xét ΔMAD và ΔMBC có
\(\widehat{MAD}=\widehat{MBC}\)
MA=MB
\(\widehat{AMD}=\widehat{BMC}\)
Do đó: ΔMAD=ΔMBC
Suy ra: AD=BC
=>OD=OC
3: Ta có: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI là tia phân giác của góc COD
1: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: \(\widehat{OAM}=\widehat{OBM}\)
2: Xét ΔMAD và ΔMBC có
\(\widehat{MAD}=\widehat{MBC}\)
MA=MB
\(\widehat{AMD}=\widehat{BMC}\)
Do đó:ΔMAD=ΔMBC
Suy ra: AD=BC
Ta có: OA+AD=OD
OB+BC=OC
mà OA=OB
và AD=BC
nên OD=OC
a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )