Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOAB cân tại O
mà OC là phân giác
nên OC vuông góc AB và C là trung điểm của AB
b: Xét tứ giác OAMB có
C là trung điểm chung của OM và AB
=>OAMB là hình bình hành
=>OA//MB và OB//MA

Sửa đề: OA=OB=OC
a: OB là phân giác của góc AOC
=>\(\hat{AOB}=\hat{BOC}=\frac12\cdot\hat{AOC}=60^0\)
Xét ΔOAB có OA=OB và \(\hat{AOB}=60^0\)
nên ΔOAB đều
=>OA=OB=AB và \(\hat{OAB}=\hat{OBA}=\hat{AOB}=60^0\)
Xét ΔOBC có OB=OC và \(\hat{BOC}=60^0\)
nên ΔBOC đều
=>BO=OC=BC và \(\hat{BOC}=\hat{OBC}=\hat{OCB}=60^0\)
Ta có: \(\hat{AOB}=\hat{OBC}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AO//BC
Ta có: \(\hat{COB}=\hat{ABO}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OC//AB
b: OA=OB=AB
OB=OC=BC
Do đó: OA=OB=AB=OC=BC
ta có: OA=OC
=>O nằm trên đường trung trực của AC(1)
BA=BC
=>B nằm trên đường trung trực của AC(2)
Từ (1),(2) suy ra OB là đường trung trực của AC
=>OB⊥AC

a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB

I don't now
or no I don't
..................
sorry