K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

A) xet tam giac BCO vuong tai C va tam giac AMO vuong tai M ta co 

OB= OA ( gt)  goc BOC= goc AOM ( goc chung )

--> tam giac BCO = tam giac AMO ( ch-gn)

--> BC= AM

b)xet tam giac OMK vuong tai M va tam giac OCK vuong tai C ta co

OK=OK ( canh chung )

 OM=OC ( tam giac OAM= tam giac OBC)

--> tam giac OMK = tam giac OCK ( ch-cgv)

4 tháng 3 2017

em mới lớp 4 thời chưa biết đâu còn non lắm chị ạ

23 tháng 11 2019

mãi mới có 1 bài toán lớp 7 

hình :

O x y A B I M

xét  \(\Delta OAI\)và \(\Delta OBI\)

         OA  = OB ( gt)

         IA=IB ( I là trung điểm của AB)

         OI - cạnh chung

=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)

vì \(\Delta OAI\)=\(\Delta OBI\)

=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)

OI nằm giữa 2 tia Ox và Oy

=> OI là pg của \(\widehat{xOy}\)

câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm

a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOB}\) chung

Do đó: ΔOAM=ΔOBN

=>\(\widehat{OMA}=\widehat{ONB}\) và OM=ON

Ta có: OA+AN=ON

OB+BM=OM

mà OA=OB và ON=OM

nên AN=BM

Xét ΔKAN vuông tại A và ΔKBM vuông tại B có

KA=KB

\(\widehat{KNA}=\widehat{KMB}\)

Do đó: ΔKAN=ΔKBM

b: ΔKAN=ΔKBM

=>KA=KB

Xét ΔOAK vuông tại A và ΔOBK vuông tại B có

OK chung

OA=OB

Do đó: ΔOAK=ΔOBK

=>\(\widehat{AOK}=\widehat{BOK}\)

=>OK là phân giác của \(\widehat{AOB}\)

5 tháng 12 2023

bạn vẽ hình hộ mình với ạ!!!!

6 tháng 1 2019

a) \(\Delta AKO\)và \(\Delta BKO\)có:

          OA = OB (theo GT)

          \(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

         OK: cạnh chung

    Do đó: \(\Delta AKO=\Delta BKO\)(c.g.c)

   Suy ra: AK = KB (cặp cạnh tương ứng)

b) Ta có: \(\widehat{AKO}+\widehat{BKO}=180^o\)(vì là hai góc kề bù)

            Mà \(\widehat{AKO}=\widehat{BKO}\)(do \(\Delta AKO=\Delta BKO\))

   Do đó: \(\widehat{AKO}=\frac{180^o}{2}=90^o\)

  Suy ra: \(OK\perp AB\)

c) \(\Delta HOK\)và \(\Delta IOK\)có:

        \(\widehat{KHO}=\widehat{KIO}=90^o\)(do ​\(KH\perp Ox,KI\perp Oy\))

        OK: cạnh chung

       ​\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

     Do đó: \(\Delta HOK=\Delta IOK\)(cạnh huyền, góc nhọn)

    Suy ra \(\widehat{HKO}=\widehat{IKO}\)(cặp góc tương úng)

     Mà tia KO nằm giữa hai tia KH và KI

    Nên KO là tia phân giác của \(\widehat{HKI}\)

        

 
2 tháng 2 2021

a, C/m MA = MB

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0