Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a) xét tam giác AOH và tam giác BOH có :
OH là cạnh chung
góc AOH = góc BOH (OT là tia phân giác của góc O)
góc AHO =góc BHO (=90 độ )
suy ra : tam giác AOH = tam giác BOH (g.c.g)
suy ra : OA =OB (hai cạnh tương ứng )
b) xét tam giác AOC và tam giác BOC có
OC là cạnh chung
OA=OB (theo câu a)
góc AOC =góc BOC (OT là tia phân giác của góc O)
suy ra : tam giác AOC=tam giác BOC ( c.g.c)
suy ra : CA = CB ( hai cạnh tương ứng )
suy ra : góc OAC =góc OBC (hai cạnh tương ứng )
vậy .....bạn tự kết luận nhé
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).
a) ∆AOH và ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
ˆOACOAC^=ˆOABOAB^(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
ˆOACOAC^= ˆOBCOBC^( góc tương ứng).
Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx
a) Xét ΔAOH∆AOH và ΔBOH∆BOH có:
+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)
+) OHOH là cạnh chung
+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)
Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)
Suy ra OA=OBOA=OB (hai cạnh tương ứng).
b) Xét ΔAOC∆AOC và ΔBOC∆BOC có:
+) OA=OBOA=OB (cmt)
+) ˆAOC=ˆBOCAOC^=BOC^ (gt)
+) OCOC cạnh chung.
Suy ra ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)
Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)
ˆOAC=ˆOBCOAC^=OBC^ ( hai góc tương ứng).
ΔAOH và ΔBOH có
∠ AOH = ∠ BOH (vì Ot là tia phân giác góc xOy)
OH cạnh chung
∠ OHA = ∠ OHB (= 90º)
⇒ ΔAOH = ΔBOH (g.c.g)
⇒ OA = OB (hai cạnh tương ứng)
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).