Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB
O x y z C E B A H
Xét tam giác AHO và tam giac BHO
có góc AOH = góc BOH (GT)
OH chung
góc OHA=góc OHB = 90 độ
suy ra tam giác AHO = tam giac BHO (G.C.G)
suy ra OA=OB(hai cạnh tương ứng) , HA=HB (hai cạnh tương ứng)
b) Vì góc AOB = 1000
mầ tia OH là phân giác của góc AOB
suy ra góc AOH = góc BOH =góc AOB:2=500
LẠi có OA=OB suy ra tam giác AOB cân tại O
suy ra góc ABO=góc BAO
Trong tam giác AOB có góc ABO+góc BAO +1000= 1800
suy ra góc ABO=góc BAO=400
c) Xét tam giác HBC và tam giác HAC
có BH=HA (CMT)
góc AHC=góc BHC=900
HC chung
suy ra tam giác HBC = tam giác HAC (c.g.c)
suy ra BC=CA suy ra tam giác ABC cân tại C
mà góc HBC = 600
suy ra tam giác ABC đều.
d) Xét tam giác AOB và tam giác EBO
có BE=OA=BO
góc EBO=góc AOB=1000
OB chung
suy ra tam giác AOB =tam giác EBO
suy ra AB=OE (hai cạnh tương ứng)
a)Xét hai t/g vuông OHA và OHB có:
OH(chung)
góc HOA=góc HOB(gt)
=>T/g OHA = t/g OHB(cạnh góc vuông-góc nhọn kề)
=>HA=HB;OA=OB
b)Vì OB=OA(câu a) nên t/g OAB cân tại O
=>Góc A=góc B
Do đó:
A=B=(180-O):2
=(180-100):2=40
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
b: Ta có: ΔOAI=ΔOBI
=>IA=IB
=>I nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OI là đường trung trực của BA
=>OI\(\perp\)AB
=>Oz\(\perp\)AB
c: ta có: Oz\(\perp\)AB
AB//CD
Do đó: Oz\(\perp\)CD tại I
Xét ΔOCD có
OI là đường cao
OI là đường phân giác
Do đó;ΔOCD cân tại O
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
d: Ta có: OB+BD=OD
OA+AC=OC
mà OB=OA
và OC=OD
nên BD=AC
Xét ΔBDC và ΔACD có
BD=AC
\(\widehat{BDC}=\widehat{ACD}\)(ΔOCD cân tại O)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\widehat{BCD}=\widehat{ADC}\)
=>\(\widehat{MCD}=\widehat{MDC}\)
Xét ΔMCD có \(\widehat{MCD}=\widehat{MDC}\)
nên ΔMCD cân tại M
=>MC=MD
=>M nằm trên đường trung trực của CD(3)
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên OI là đường trung trực của CD(4)
Từ (3) và (4) suy ra O,M,I thẳng hàng