Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOIE vuông tại I và ΔMIE vuông tại I có
IE chung
IO=IM
Do đó: ΔOIE=ΔMIE
Xét tam giác OIE và tam giác MIE có:
IM = IO (gt)
góc EIO = góc EIM = 90 độ (gt)
cạnh IE chung
Vậy tam giác OIE = tam giác MIE (c.g.c)
b) tam giác OIE = tam giác MIE (cmt)
suy ra: EM = OE ( hai cạnh tương ứng của hai tam giác bằng nhau
a: Xét ΔOIE vuông tại I và ΔMIE vuông tại I có
EI chung
IO=IM
Do đó: ΔOIE=ΔMIE
b: Xét ΔOEF có
OI là đường cao
OI là đường phân giác
Do đó: ΔOEF cân tại O
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác OEMF có
I là trung điểm chung của OM và EF
Do đó: OEMF là hình bình hành
mà OE=OF
nên OEMF là hình thoi
=>EM=OF(3) và EM//OF
c: G là trung điểm của ME
=>\(MG=\dfrac{ME}{2}\left(1\right)\)
K là trung điểm của OF
=>\(OK=\dfrac{OF}{2}\left(2\right)\)
Từ (1),(2),(3) suy ra OK=MG
OF//ME
\(K\in OF;G\in ME\)
Do đó: OK//MG
Xét tứ giác OKMG có
OK//MG
OK=MG
Do đó: OKMG là hình bình hành
=>OM cắt KG tại trung điểm của mỗi đường
mà I là trung điểm của OM
nên I là trung điểm của GK
=>G,I,K thẳng hàng
Mọi người có thấy nick của bạn nào tên là Đồng Xuân hướng không
a: Xét ΔOEF có
OM vừa là đường cao, vừa là phân giác
nên ΔOEF cân tại O
Xét ΔOIE vuông tại I và ΔMIE vuông tại I có
EI chung
OI=MI
Do đó: ΔOIE=ΔMIE
b: Xét tứ giác OEMF có
I là trung điểm chung của OM và EF
OM vuông góc với EF tại I
Do đó: OEMF là hình thoi
=>EM=OE
c: Xét tứ giác OKMG có
OK//MG
OK=MG
Do đó: OKMG là hình bình hành
=>OM cắt KG tại trung điểm của mỗi đường
=>G,K,I thẳng hàng