Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a)a) Vì: Am//OyAm//Oy (đề bài) nên:
Góc M1=M1= góc O1O1 (so le trong) (4)(4)
Góc xAm=xAm= góc xOyxOy (đồng vị) (1)(1)
Ta có: OtOt là phân giác góc xOyxOy (đề bài)
⇒⇒ Góc O1=O1= góc O2=O2= góc xOy/2(2)xOy/2(2)
AnAn là phân giác góc xAmxAm (đề bài)
⇒⇒ Góc nAm=nAm= góc xAm/2xAm/2 (3)(3)
Từ (1),(2),(3)⇒(1),(2),(3)⇒ Góc nAm=gócO1(5)nAm=gócO1(5)
Từ (4)(4) và (5)⇒(5)⇒ Góc nAm=nAm= góc M1M1 (vì cùng bằng góc O1O1)
Mà hai góc này ở vị trí so le trong ⇒An//Ot⇒An//Ot
b)b) Vì: góc O1=O1= góc O2O2 (OtOt là tia phân giác góc xOyxOy)
Mà góc O1=O1= góc M1M1 (chứng minh trên)
⇒⇒ Góc O2=O2= góc M1M1 (cùng bằng O1O1)
⇔ΔAOM⇔ΔAOM cân tại AA (vì có hai góc đáy bằng nhau)
Xét ΔAOMΔAOM cân tại A,A, có: AHAH là đường cao
⇒AH⇒AH là đường phân giác (trong tam giác cân đường cao vừa là đường phân giác)
Vậy tia AHAH là tia phân giác đối với góc OAmOAm
BẠN THAM KHẢO NHA!!!
a.
vì Am//Oy
suy ra:góc xOy=xAm
suy ra:yOt=xOy chia 2 và bằng xAm chia 2
suy ra:nAm=xOy chia 2 và bằng xAm chia 2
suy ra:yOt // nAm
suy ra:An // Ot
Câu a) Ta có: AM // Oy nên góc xAN = góc xOT (đồng vị)
=> AN // Ot
Câu b mình ko rõ làm như thế nào?
..
a Có: Ot là tia p/g của \(\widehat{yOA}\)
\(\Rightarrow\widehat{tOA}=\frac{1}{2}\widehat{yOA}\)
Có An là tia p/g của \(\widehat{mAx}\)
\(\Rightarrow\widehat{nAx}=\frac{1}{2}\widehat{mAx}\)
Mà Am // Oy
\(\Rightarrow\widehat{yOA}=\widehat{mAx}\)
\(\Rightarrow\widehat{tOA}=\widehat{nAx}\)
=>An//Ot
b) Nhận xét:
Tia \(AH\perp\widehat{mOA}\)
a) \(\widehat{xAm}\) = \(\widehat{xOy}\) ( hai góc đồng vị do Am // Oy )
\(\widehat{xAn}\) = \(\dfrac{1}{2}\) \(\widehat{xAm}\) ( An là phân giác của \(\widehat{xAm}\) )
\(\widehat{xOt}\) = \(\dfrac{1}{2}\) \(\widehat{xOy}\) ( Ot là phân giác của \(\widehat{xOy}\) )
\(\Rightarrow\) \(\widehat{xAn}\) = \(\widehat{xOt}\)
mà chúng ở vị trí đồng vị
\(\Rightarrow\) An // Ot
b) An // Ot
AH \(\perp\) Ot
\(\Rightarrow\) An \(\perp\) AH
\(\widehat{xAO}\) = \(\widehat{xAn}\) + \(\widehat{mAn}\) + \(\widehat{mAH}\) + \(\widehat{HAO}\) = 180\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{nAH}\) + \(\widehat{HAO}\) = 180\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{HAO}\) = 180\(^O\) - \(\widehat{nAH}\) = 180\(^O\) - 90\(^O\) = 90\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{HAO}\) = \(\widehat{mAn}\) + \(\widehat{mAH}\)
mà \(\widehat{xAn}\) = \(\widehat{mAn}\) \(\Rightarrow\) \(\widehat{HAO}\) = \(\widehat{mAH}\)
\(\Rightarrow\) AH là phân giác của \(\widehat{OAm}\)