K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

undefined

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0
11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng

8 tháng 12 2016

AE = CF (gt)

mà AE // CF (ABCD là hình chữ nhật)

=> AECF là hình bình hành

=> FA // CE

=> AFD = ECF (2 góc đồng vị)

mà ECF = CEB (2 góc so le trong, AB // CD)

=> AFD = CEB (1)

AB = CD (ABCD là hình chữ nhật)

mà AE = CF (gt)

=> AB - AE = CD - CF

=> EB = DF (2)

Xét tam giác NEB và tam giác MFD có:

NEB = MFD (theo 1)

EB = FD (theo 2)

EBN = FDM (2 góc so le trong, AB // CD)

=> Tam giác NEB = Tam giác MFD (g.c.g)

=> BN = DM (2 cạnh tương ứng)

O là trung điểm của BD (3)

=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)

=> O là trung điểm của EF (AECF là hình bình hành) (5)

AEI = ABD (2 góc so le trong, EI // BD)

CFK = CDB (2 góc so le trong, FK // BD)

mà ABD = CBD (2 góc so le trong, AB // CD)

=> AEI = CFK (6)

EI // BD (gt)

FK // DB (gt)

=> EI // FK (7)

Xét tam giác EAI và tam giác FCK có:

IEA = KFC (theo 6)

EA = FC (gt)

EAI = FCK (= 900)

=> Tam giác EAI = Tam giác FCK (g.c.g)

=> EI = FK (2 cạnh tương ứng)

mà EI // FK (theo 7)

=> EIFK là hình bình hành

mà O là trung điểm của EF (theo 5)

=> O là trung điểm của IK (8)

Từ (3), (4), (5) và (8)

=> AC, EF, IK đồng quy tại O là trung điểm của BD

O là trung điểm của AC và BD

=> OA = OC = \(\frac{AC}{2}\)

OB = OD = \(\frac{BD}{2}\)

mà AC = BD (ABCD là hình chữ nhật)

=> OA = OD = OB = OC

=> Tam giác OAD cân tại O

mà AOD = 600

=> Tam giác OAD đều

=> AD = OA = OD

mà AD = 1 cm

AD = BC (ABCD là hình chữ nhật)

=> OA = OD = OC = OB = BC = 1 cm

=> AC = 2OA = 2 . 1 = 2 cm

Xét tam giác BAC vuông tại B có:

\(AC^2=BA^2+BC^2\) (định lý Pytago)

\(AB^2=AC^2-BC^2\)

\(=2^2-1^2\)

\(=4-1\)

= 3

\(AB=\sqrt{3}\)

\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)

8 tháng 12 2016

@@ my god oaoa