Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAC\)và \(\Delta OBC\)có:
OA = OB (gt)
\(\widehat{AOC}=\widehat{BOC}\)(Oz là tia p/g của \(\widehat{xOy}\))
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow AC=BC\)(2 cạnh tương ứng)
b) Ta có: \(\Delta OAC=\Delta OBC\)(theo a)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)
hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD\)và \(\Delta OBE\)có:
\(\widehat{O}\)là góc chung
OA = OB (gt)
\(\widehat{OAD}=\widehat{OBE}\)(cmt)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
=> AD = BE (2 cạnh tương ứng)
Mà AC = BC (theo a)
=> AD - AC = BE - BC
=> CD = CE
Xét \(\Delta ACE\)và \(\Delta BCD\)có:
AC = BC (cmt)
\(\widehat{ACE}=\widehat{BCD}\)(2 góc đối đỉnh)
CE = CD (cmt)
\(\Rightarrow\Delta ACE=\Delta BCD\left(c.g.c\right)\)
Tính diện tích hình thang ABCD , biết diện tích tam BMC là 4,2
bạn bieét làm ko
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Ta có: ΔOAD=ΔOBC
nên \(\widehat{OAD}=\widehat{OBC}\)
\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)
hay \(\widehat{EAB}=\widehat{ECD}\)
Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó: ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc xOy
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
=>OA=OB và CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CD=CE và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
b: Ta có: ΔOAC=ΔOBC
nên AC=BC