Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ: m O n A B x y z m n a
Vẽ tia Oz nằm trong góc mOn sao cho Oz // Ax
Ta có: mAx = mOz = mo (đồng vị)
Lại có: mOz + zOn = mOn
=> mo + zOn = ao
=> zOn = no
Do zOn = yBn = no
Mà zOn và yBn là 2 góc đồng vị => Oz // By
Mặt khác, Oz // Ax
=> Ax // By (đpcm)
b) Vì AH vuông BC nên góc AHC = 90 độ
Ta có góc HAC + C = 90 độ
=> HAC + 30 = 90
=> HAC = 90 - 30
= 60
Do AD là tia pg của BAC nên
BAD = DAC = HAC: 2 = 30 độ
Ta có HAD + DAC = HAC
=> HAD + 30 = 60
=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ
Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!
Tự vẽ hình
a) Adụng tc tổng 3 góc của 1 tg ta có:
A + B + C = 180 độ
=> 90+60+C = 180
=> C = 30
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d.\left(2k+13\right)}{d.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) khi: \(\frac{a}{b}=\frac{c}{d}\)
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng
ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng
ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)
mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500
b) ta có : toh = xoz (đối đỉnh)
mà toh = 400 \(\Rightarrow\) xoz = 400
\(\Rightarrow\) xoy = 40.2 = 800
bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không
xin cảm ơn các bạn trước!
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)