Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có tứ giác AIMJ là hcn=> AIMJ nội tiếp đường tròn đường kính AM, IJ
Vì N đối xứng với M qua IJ => góc JNI = góc JMI = 90o ha N thuộc đường tròn đường kính AM và IJ => góc ANM = 90o
mà I thuộc trung trực MN => tam giác MIC vuông cân tại I => I thuộc trung trực MC
=> I là tâm đường tròn ngoại tiếp tam giác MNC
=> góc MNC =1/2 góc MIC = 450
=> góc ABC + góc ANC = 45+90+45=1800
Hay tứ giác ABCN nội tiếp đường tròn (T) (ĐPCM)
b)CM: 1/PM<1/PB+1/PC ?
Ta có: tam giác MPC đồng dạng tam giác MBA => PM/MB=PC/BA => PM/PC=MB/BA (1)
TAM GIÁC MBP đồng dạng tam giác MAC => PM/MC=PB/CA=> PM/PB=MC/AC (2)
Cộng vế theo về của (1) và (2) ta có:
PM/PC+PM/PB=MB/BC+MC/AC=MB/BA+MC/BA=AC/BA>1 => ĐPCM
c) Áp dụng hệ thức giữa cạnh và đường cao ta có:
DH2=DK.DC => DA2=DK.DC
=> DA/DC=DK/DA => TAM GIÁC DKA đồng dạng tam giác DAC => góc AKD =DAC =45o
=> góc ABH+ góc AKH = 45+45+90=1800=> TỨ GIÁC ABHK nội tiếp
=> Góc AKB =AHB =90 = GÓC HKC
Mà góc ABK =AHK=KCH => đpcm
A B M C O O 1 2 O I E D N
a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1) = ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB
Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).
b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI
Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB
=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).
c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)
=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC
Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)
Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)
Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).
Link ảnh: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1222).png
a) Gọi U là giao điểm của AD và BM
Dễ có: \(\widehat{ACB}=\widehat{ADB}=90^0\)(các góc nội tiếp chắn nửa đường tròn) hay \(\Delta ACU\)vuông tại C
và \(\Delta ABU\)cân tại B (có BD vừa là đường cao vừa là phân giác) => D là trung điểm của AU
\(\Delta ACU\)vuông tại C có CD là trung tuyến (cmt) nên CD = AD => \(\widehat{CAD}=\widehat{ABD}\)(góc nội tiếp chắn các cung bằng nhau)
b) \(\Delta ABU\)có ID là đường trung bình nên ID // BU hay IK // BM
\(\Delta ABM\)có I là trung điểm của AB, IK // BM nên K là trung điểm của AM
\(\Delta ACM\)vuông tại C có CK là trung tuyến nên \(CK=\frac{1}{2}AM\)(đpcm)
c) Ta có: \(AC+BC\le\sqrt{2\left(AC^2+BC^2\right)}=\sqrt{2AB^2}=2\sqrt{2}R\)
\(\Rightarrow AB+AC+BC\le\left(2\sqrt{2}+2\right)R\)
Vậy chu vi tam giác ABC lớn nhất bằng \(\left(2\sqrt{2}+2\right)R\)đạt được khi AC = BC hay AB = AM = 2R