Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai đây ạ? nếu bạn k giải đc thì đừng cmt lung tung nhaa
a/ OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD
Xét tg COB và DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)
=> AD=BC (đpcm)
b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD
Có gócOCB=góc OAD=>1800 - gócOCB=1800 - góc OAD hay gócEBD=góc EAC
Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)
c/vì tgEAC= tg EBDnên ec= ed
xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)
=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)
xét tam giác cod cân tại o(vì oc=od) có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd
Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé
Xét ΔOBCΔOBC và ΔOADΔOAD có:
OB=OAOB=OA (gt)
ˆOO^ chung
OC=OAOC=OA (gt)
⇒ΔOBC=ΔOAD⇒ΔOBC=ΔOAD (c.g.c)
⇒BC=AD⇒BC=AD (hai cạnh tương ứng)
b) Xét ΔEBDΔEBD có:
ˆE1+ˆB1+ˆD1=180o⇒ˆB1=180o−ˆE1−ˆD1E1^+B1^+D1^=180o⇒B1^=180o−E1^−D1^ (1)
Xét ΔEACΔEAC có:
ˆE2+ˆA1+ˆC1=180o⇒ˆA1=180o−ˆE2−ˆC1E2^+A1^+C1^=180o⇒A1^=180o−E2^−C1^ (2)
mà ˆE1=ˆE2E1^=E2^ (đối đỉnh) (3)
ˆD1=ˆC1D1^=C1^ (do ΔOBC=ΔOADΔOBC=ΔOAD hai góc tương ứng) ($)
Từ 4 điều trên suy ra ˆB1=ˆA1B1^=A1^
Ta có: BD=OD−OB=OC−OA=ACBD=OD−OB=OC−OA=AC
Xét ΔEACΔEAC và ΔEBDΔEBD có:
ˆD1=ˆC1D1^=C1^
BD=ACBD=AC (cmt)
ˆB1=ˆA1B1^=A1^
⇒ΔEAC=ΔEBD⇒ΔEAC=ΔEBD (g.c.g)
c) ΔEAC=ΔEBD⇒EC=EDΔEAC=ΔEBD⇒EC=ED (hai cạnh tương ứng)
⇒⇒
Xét ΔOEDΔOED và ΔOECΔOEC có:
OD=OCOD=OC (gt)
ˆD1=ˆC1D1^=C1^
DE=CE (cmt)
⇒ΔOED=ΔOEC⇒ΔOED=ΔOEC (c.g.c)
⇒ˆDOE=ˆCOE⇒DOE^=COE^ (hai góc tương ứng)
⇒OE⇒OE là tiếp tuyến của ˆOO^
lưu ý:^ là dấu góc nhé
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) : góc chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)
Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ
OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ
Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)
=> DACˆ=CBDˆDAC^=CBD^
Xét ΔEAC và ΔEBD có
ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)
AC=BD(gt)
EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
=> EOCˆ=EODˆEOC^=EOD^
=> OE là tia pg của xOyˆxOy^
Xét ΔCOE và ΔDOE có:
OC=OD(cmt)
COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)
OE: cạnh chung
=> ΔCOE=ΔDOE(c.g.c)
=> OECˆ=OEDˆ=90độ
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) : góc chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
=> \(\widehat{OCB}=\widehat{ODA};\widehat{OBC}=\widehat{OAD}\) ( cặp góc tượng ứng)
Có: \(\widehat{OAD}+\widehat{DAC}=180^o\)
\(\widehat{OBC}+\widehat{CBD}=180^o\)
Mà: \(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)
=> \(\widehat{DAC}=\widehat{CBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)
AC=BD(gt)
\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
=> \(\widehat{EOC}=\widehat{EOD}\)
=> OE là tia pg của \(\widehat{xOy}\)
Xét ΔCOE và ΔDOE có:
OC=OD(cmt)
\(\widehat{COE}=\widehat{DOE}\left(cmt\right)\)
OE: cạnh chung
=> ΔCOE=ΔDOE(c.g.c)
=> \(\widehat{OEC}=\widehat{OED}=90^o\)
VỘI VÀNG QUÁ uk thánh soi