Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AOC và tam giác BOC có:
AO = BO (gt)
AOC = BOC (OC là tia phân giác của AOB)
OC là cạnh chung
=> Tam giác AOC = Tam giác BOC (c.g.c)
OA = OB (gt)
=> Tam giác OAB cân tại O
mà OI là tia phân giác của AOB
=> OI là đường trung trực của tam giác OAB
=> I là trung điểm của AB
OI _I_ AB
Ta có hình vẽ:
x O y z A B C I
Vì Oz là phân giác của xOy nên \(xOz=zOy=\frac{xOy}{2}\)
Xét Δ AOC và Δ BOC có:
OA = OB (gt)
góc AOC = góc BOC (chứng minh trên)
OC là cạnh chung
Do đó, Δ AOC = Δ BOC (c.g.c) (đpcm)
Vì Δ AOC = Δ BOC nên AC = BC (2 cạnh tương ứng)
góc ACO = góc BCO (2 góc tương ứng)
Xét Δ AIC và Δ BIC có:
AC = BC (chứng minh trên)
góc ACI = BCI (chứng minh trên)
CI là cạnh chung
Do đó, Δ AIC = Δ BIC (c.g.c)
=> AI = IB (2 cạnh tương ứng)
=> I là trung điểm của đoạn AB (đpcm)
Vì Δ AIC = Δ BIC nên góc AIC = BIC (2 góc tương ứng)
Lại có: AIC + BIC = 180o (kề bù)
Do đó, góc AIC = góc BIC = 90o
=> \(AB\perp OC\left(đpcm\right)\)
Xét tam giác AOH và tam giác BOH có:
AO = BO (gt)
AOH = BOH (OH là tia phân giác của AOB)
OH chung
=> Tam giác AOH = Tam giác BOH (2 cạnh tương ứng)
=> AH = BH (2 cạnh tương ứng)
=> OH là đường trung tuyến của tam giác OAB cân tại O (OA = OB)
=> OH là đường cao của tam giác OAB cân tại O
=> OH _I_ AB
Xét tam giác AOH và tam giác BOH có :
AO=BO (GT)
AOH=BOH
OH là cạnh chung.............................
Giải tiếp nhe !!! Mình bận việc ời :(((
cái đề dài thế này, chả biết khó hay ko nhưng mà ngại làm quá :[
hình như câu b cho đề sai, pải là: ∆EAB=∆ECD mới đúng
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(OAH\) và \(OBH\) có:
\(OA=OB\left(gt\right)\)
\(AH=BH\) (vì H là trung điểm của \(AB\))
Cạnh OH chung
=> \(\Delta OAH=\Delta OBH\left(c-c-c\right).\)
b) Theo câu a) ta có \(\Delta OAH=\Delta OBH.\)
=> \(\widehat{AOH}=\widehat{BOH}\) (2 góc tương ứng).
Hay \(\widehat{AOM}=\widehat{BOM}.\)
Xét 2 \(\Delta\) \(OAM\) và \(OBM\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOM}=\widehat{BOM}\left(cmt\right)\)
Cạnh OM chung
=> \(\Delta OAM=\Delta OBM\left(c-g-c\right)\)
=> \(AM=BM\) (2 cạnh tương ứng).
Chúc bạn học tốt!
a/ Xét tam giác OAC và tam giác OBD có
O : góc chung
OA = OB (GT)
OC = OD (GT)
=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )
=>AC = BD (2 cạnh tương ứng)
b/ Xét tam giác IAD và IBC có
-góc C = góc D (vì tam giác OAC=tam giác OBD)
-A = B = 900
-AI = BI (vì AC = BD)
=> tam giác IAD = tam giác IBC (góc cạnh góc)
=>AD=BC (2 cạnh tương ứng)
c/ Xét tam giác OAI và tam giác OBI có
-OA = OB (GT)
-góc AIO = góc OIB
-A = B = 900
=> tam giác OAI = tam giác OBI (cạnh góc cạnh)
=> góc AOI = góc IOB (2 góc tương ứng)
Vậy OI là phân giác của góc O
d/ Gọi OI và AB cắt nhau tại M
Xét tam giác OAM và tam giác OBM có
-AOM = BOM
-OA = OB
-OM: cạnh chung
=> tam giác OAM = tam giác OBM (cạnh góc cạnh)
=> AMO = BMO
Ta có: AMO + BMO = 1800 (kề bù)
Mà AMO = BMO
=> AMO = BMO = 1/2 1800 = 900
Vậy OI là đường trung trực của đoạn AB
e/ Gọi phân giác của góc O cắt CD tại N
Xét tam giác INC = tam giác IND có
IN: cạnh chung
DIN = CIN
ID = IC
=> tam giác INC = tam giác IND (cạnh góc cạnh)
=> INC = IND
Ta có; IND + INC =1800 (kề bù)
Mà INC = IND
=> INC =IND = 1/2 1800 = 900
=> IN là trung trực của CD
Ta có: IN là trung trực của CD
OI là trung trực của AB
=> AB//CD
a: Xét ΔOAH và ΔOBH có
OA=OB
HA=HB
OH chung
Do đó: ΔOHA=ΔOHB