Cho góc nhọn xOy, trên tia Ox lấy điểm A (A khác 0), trên tia O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

1: Xét ΔAOM và ΔBOM có

OA=OB

OM chung

AM=BM

Do đó: ΔOAM=ΔOBM

2: Xét ΔMNA và ΔMOB có

MN=MO

\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)

MA=MB

Do đó: ΔMNA=ΔMOB

3: Ta có: ΔMNA=ΔMOB

=>NA=OB

Ta có: ΔMNA=ΔMOB

=>\(\widehat{MNA}=\widehat{MOB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//OB

Ta có: OB=AN

\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)

\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)

Do đó: OK=KB=AH=HN

Xét tứ giác OKNH có

OK//NH

OK=NH

Do đó: OKNH là hình bình hành

=>ON cắt KH tại trung điểm của mỗi đường

mà M là trung điểm của ON

nên M là trung điểm của KH

=>K,M,H thẳng hàng

7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO

a: Xét ΔOAD và ΔOCB có 

OA=OC

\(\widehat{COB}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=BC

b: Xét ΔABD và ΔCDB có

AB=CD

\(\widehat{ABD}=\widehat{CDB}\) 

DB chung

Do đó: ΔABD=ΔCDB

Suy ra: \(\widehat{HAB}=\widehat{HCD}\)

Xét ΔHAB và ΔHCD có 

\(\widehat{HAB}=\widehat{HCD}\)

AB=CD

\(\widehat{HBA}=\widehat{HDC}\)

Do đó: ΔHAB=ΔHCD

c: Xét ΔAOH và ΔCOH có

OA=OC

OH chung

HA=HC

Do đó: ΔAOH=ΔCOH

Suy ra: \(\widehat{AOH}=\widehat{COH}\)

15 tháng 12 2023

a: Xét ΔOMA và ΔOMB có

OM chung

MA=MB

OA=OB

Do đó: ΔOMA=ΔOMB

b: Xét ΔMAN và ΔMBO có

MA=MB

\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)

MN=MO

Do đó: ΔMAN=ΔMBO

=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng

Ta có: \(\widehat{MAN}=\widehat{MBO}\)

mà hai góc này là hai góc ở vị trí so le trong

nên OB//AN

Ta có: ΔMBO=ΔMAN

=>BO=AN(1)

Ta có: K là trung điểm của OB

=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)

Ta có:H là trung điểm của AN

=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra OK=KB=HA=HN

Xét tứ giác OKNH có

OK//NH

OK=NH

Do đó: OKNH làhình bình hành

=>ON cắt KH tại trung điểm của mỗi đường

mà M là trung điểm của ON

nên M là trung điểm của KH

=>K,M,H thẳng hàng

15 tháng 12 2023

giải theo cách giải của lớp 7, dùng tam giác giúp em ạ

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

16 tháng 10 2016

Xét tam giác AOC và tam giác BOC có:

AO = BO (gt)

AOC = BOC (OC là tia phân giác của AOB)

OC là cạnh chung

=> Tam giác AOC = Tam giác BOC (c.g.c)

OA = OB (gt)

=> Tam giác OAB cân tại O

mà OI là tia phân giác của AOB

=> OI là đường trung trực của tam giác OAB

=> I là trung điểm của AB

     OI _I_ AB

16 tháng 10 2016

Ta có hình vẽ:

x O y z A B C I

Vì Oz là phân giác của xOy nên \(xOz=zOy=\frac{xOy}{2}\)

Xét Δ AOC và Δ BOC có:

OA = OB (gt)

góc AOC = góc BOC (chứng minh trên)

OC là cạnh chung

Do đó, Δ AOC = Δ BOC (c.g.c) (đpcm)

Vì Δ AOC = Δ BOC nên AC = BC (2 cạnh tương ứng)

góc ACO = góc BCO (2 góc tương ứng)

Xét Δ AIC và Δ BIC có:

AC = BC (chứng minh trên)

góc ACI = BCI (chứng minh trên)

CI là cạnh chung

Do đó, Δ AIC = Δ BIC (c.g.c)

=> AI = IB (2 cạnh tương ứng)

=> I là trung điểm của đoạn AB (đpcm)

Vì Δ AIC = Δ BIC nên góc AIC = BIC (2 góc tương ứng)

Lại có: AIC + BIC = 180o (kề bù)

Do đó, góc AIC = góc BIC = 90o

=> \(AB\perp OC\left(đpcm\right)\)