K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

 

a/ Xét tam giác OAC và tam giác OBD có

O : góc chung

OA = OB (GT)

OC = OD (GT)

=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )

=>AC = BD (2 cạnh tương ứng)

b/ Xét tam giác IAD và IBC có

-góc C = góc D (vì tam giác OAC=tam giác OBD)

-A = B = 900

-AI = BI (vì AC = BD)

=> tam giác IAD = tam giác IBC (góc cạnh góc)

=>AD=BC (2 cạnh tương ứng)

c/ Xét tam giác OAI và tam giác OBI có

-OA = OB (GT)

-góc AIO = góc OIB

-A = B = 900

=> tam giác OAI = tam giác OBI (cạnh góc cạnh)

=> góc AOI = góc IOB (2 góc tương ứng)

Vậy OI là phân giác của góc O

d/ Gọi OI và AB cắt nhau tại M

Xét tam giác OAM và tam giác OBM có

-AOM = BOM

-OA = OB

-OM: cạnh chung

=> tam giác OAM = tam giác OBM (cạnh góc cạnh)

=> AMO = BMO

Ta có: AMO + BMO = 1800 (kề bù)

Mà AMO = BMO

=> AMO = BMO = 1/2 1800 = 900

Vậy OI là đường trung trực của đoạn AB

e/ Gọi phân giác của góc O cắt CD tại N

Xét tam giác INC = tam giác IND có

IN: cạnh chung

DIN = CIN

ID = IC

=> tam giác INC = tam giác IND (cạnh góc cạnh)

=> INC = IND

Ta có; IND + INC =1800 (kề bù)

Mà INC = IND

=> INC =IND = 1/2 1800 = 900

=> IN là trung trực của CD

Ta có: IN là trung trực của CD

OI là trung trực của AB

=> AB//CD

12 tháng 12 2016

Ai giúp mk với mai mk phải nộp rồi

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

30 tháng 11 2023

a/ Xét ΔOAE và ΔOBF có:

+) OA = OB (GT)

+) O: góc chung.

+) ∠A = ∠B = 90o (gt)

⇒ ΔOAE = ΔOBF ( g.c.g )

⇒ AE = BF ( 2 góc tương ứng )

---

b/ Có:

+) ∠E = ∠F ( vì ΔOAE = Δ OBF ) (1)

+) ∠OAI = ∠OBI ( gt )

Mà: ∠OAI + ∠IAF = ∠OBI + ∠IBE = 180o( kề bù )

⇒ ∠IAF = ∠IBE. (2)

⇔ AF = BE. (3)

Từ (1), (2) và (3) ⇒ ΔAFI = ΔBEI ( g.c.g )

---

c/ Xét ΔAIO và ΔBIO có:

+) OA = OB ( gt )

+) I: cạnh chung.

+) AI = BI ( vì ΔAFI = ΔBEI )

⇒ ΔAIO = ΔBIO ( c.c.c )

⇒ ∠AOI = ∠BOI ( 2 cạnh tương ứng )

⇒ OI là phân giác của ∠AOB. ( đpcm )

                        ~ Chúc bn hc tốt!^^ ~

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

19 tháng 12 2016

a) Xét 2 tam giác vuông OAC và tam giác OBD có:

OA = OB (gt)

O là góc chung

suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)

b) Ta có : OD = OA + AD

OC = OB + BC

mà OD = OC (vì tam giác OAC = tam giác OBD)

OA = OB ( gt)

suy ra AD = BC

Xét 2 tam giác vuông ADI và tam giác BCI có:

AD = BC (cmt)

góc D = góc C (vì tam giác OAC = tam giác OBD)

suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)

suy ra IA = IB (2 cạnh tương ứng)

c)Xét 2 tam giác vuông OAI và tam giác OBI có:

OI là cạnh chung

OA = OB (gt)

suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)

suy ra góc O1 = góc O2 (2 góc tương ứng)

suy ra OI là tia phân giác của góc xOy

Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!

Mình nhầm tí!

19 tháng 12 2016

Ta có hình vẽ: O A D I C B 1 2 1 2 1 2

18 tháng 12 2016

O A C B D E

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{OCB}=\widehat{ODA};\widehat{OBC}=\widehat{OAD}\) ( cặp góc tượng ứng)

Có: \(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà: \(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

=> \(\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> \(\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

\(\widehat{COE}=\widehat{DOE}\left(cmt\right)\)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> \(\widehat{OEC}=\widehat{OED}=90^o\)

18 tháng 12 2016

VỘI VÀNG QUÁ uk thánh soi