Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
a) \(\Delta OBC\) và \(\Delta ODA\)có
\(\widehat{O}\): chung
\(\frac{OB}{OD}=\frac{OC}{OA}\left(\frac{6}{8}=\frac{1.5}{2}\right)\)
=> \(\Delta OBC\)đồng dạng với \(\Delta ODA\) (cần phải hỏi bài này k?!)
b) vì ......................................................... (theo a)
=> \(\widehat{B}=\widehat{D}\)
tứ giác ABCD có \(\widehat{B}=\widehat{D}\)mà j j đấy nên nó là tứ giác nội tiếp
c)\(\widehat{BDC}=\widehat{OAC}\left(=180-\widehat{CAB}\right)\)
ez
b) ta có ANO=OAM( cùng chắn AM)
mà OAM=ONB(c/m câu a)
=> ANO=BNO => ON là phân giác ANB
góc ABO=ONB (cùng chắn cung MB)
góc ABO=OAB
suy ra: ONB=OAB
tứ giác AOBN có góc N và góc A cùng nhìn BO dưới 1 góc bằng nhau => AOBN nội tiếp