Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM
Do đó : OMB=OMA
Xét tam giác OBM=tam giácOAM (c.g.c)
b,Ta có :tam giác OBM = tam giác OAM (ý a)
Do đó: OB=OA(2 cạnh tương ứng)
Nên:tam giác BOA cânt ại A
c, Ta có :tam giác OBM= tam giác OAM (ý a)
Do đó: MB=MA (2 cạnh tương ứng)
Xét tam giác MBE = tam giác MAD (g.c.g)
Do đó MD=ME (2 cạnh tương ứng )
d, Ta có :OE=OB+BE
và:OD=OA+AD
Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )
Nên:OE=OD
Gọi OM cắt DE tại I
Xét tam giác DOI=tam giác EOI (c.g.c)
Do đó :OID = OIE (2 góc tương ứng)
Mà OID + OIE= 180 độ(kề bù)
Nên : OID = OIE = 90 độ
Do đó: OM vuông góc DE
Chỗ nào k hiểu nt hỏi mk nhé
x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2
a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :
\(OM\)chung
\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))
=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )
=> \(MA=MB\)( hai cạnh tương ứng )
=> \(OA=OB\)( hai cạnh tương ứng )
b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O
c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )
Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)
Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)
Xét \(\Delta MAD\)và \(\Delta MBE\)có :
\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)
\(MA=MB\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)
=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)
=> \(MD=ME\)( hai cạnh tương ứng )
=> \(AD=BE\)( hai cạnh tương ứng )
d) Nối D với E được đoạn thẳng DE cắt OM tại I
Ta có : \(OA+AD=OD\)
\(OB+BE=OE\)
mà \(OA=OB\), \(AD=BE\)
=> \(OD=OE\)
Xét \(\Delta OID\)và \(\Delta OIE\)ta có :
\(OD=OE\left(cmt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(OM\)chung
=> \(\Delta OID\) = \(\Delta OIE\)( c.g.c )
=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )
Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)
=> \(OI\perp DE\)hay \(M\perp DE\)
* Ủng hộ nhé *
a) Ta thấy ngay (Cạnh huyền - góc nhọn)
b) Do
Mà AB = AC nên AO là đường trung trực đoạn thẳng BC hay AO vuông góc BC.
c) Do OB = OC nên OB = 5cm.
Áp dụng định lý Pi-ta-go cho tam giác vuông BEO ta có:
EC = EO + OC = 8cm
Vậy thì áp dụng định lý Pi-ta-go cho tam giác vuông BEC ta có:
d) Ta thấy ngay hay tam giác ABC là tam giác đều.
x O y A z B M H K
Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:
\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )
OM: cạnh chung
\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )
\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)
\(\Rightarrow OA=OB\) ( cạnh t/ứng )
\(\Rightarrow MA=MB\) ( cạnh t/ứng )
b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )
Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )
Mà \(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)
\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)
Xét \(\Delta HOM,\Delta KOM\) có:
\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)
OM: cạnh chung
\(\widehat{HMO}=\widehat{OMK}\) ( cmt )
\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)
\(\Rightarrow MH=MK\) ( cạnh t/ứng )
Vậy...
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau