Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOMA vuông tại M và ΔOMB vuông tại M có
OA=OB
OM chung
Do đó: ΔOMA=ΔOMB
x O y t M A B
a, Vì Ot là phân giác của xOy
=> xOt = tOy = xOy/2
Xét △OAM vuông tại A và △OBM vuông tại B
Có: AOM = MOB
OM là cạnh chung
=> △OAM = △OBM (cgv-gn)
b, Vì △OAM = △OBM
=> OA = OB (2 cạnh tương ứng)
=> AM = BM (2 cạnh tương ứng)
Xét △OAB có: OA = OB
=> △OAB cân tại O
Xét △ABM có: AM = BM
=> △ABM cân tại M
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK