Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!
Mình nhầm tí!
a, Xét △OBD vuông tại D và △OAC vuông tại C
Có: xOy là cạnh chung
OB = OA (gt)
=> △OBD = △OAC (ch-gn)
b, Vì △OBD = △OAC (cmt) => OD = OC (2 cạnh tương ứng) và OBD = OAC (2 góc tương ứng)
Ta có: OD + AD = OA và OC + CB = OB
Mà OA = OB (gt) ; OD = OC (cmt)
=> AD =BC
Xét △CIB vuông tại C và △DIA vuông tại D
Có: BC = AD (cmt)
CBI = DAI (2 góc tương ứng)
=> △CIB = △DIA (cgv-gnk)
=> IC = ID (2 cạnh tương ứng)
c, Xét △AOI và △BOI
Có: OA = OB (gt)
OI là cạnh chung
IA = IB (△DIA = △CIB)
=> △AOI = △BOI (c.c.c)
=> AOI = BOI (2 góc tương ứng)
=> OI là tia phân giác của góc AOB
hay OI là tia phân giác của góc xOy
mãi mới có 1 bài toán lớp 7
hình :
xét \(\Delta OAI\)và \(\Delta OBI\)
OA = OB ( gt)
IA=IB ( I là trung điểm của AB)
OI - cạnh chung
=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)
vì \(\Delta OAI\)=\(\Delta OBI\)
=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)
OI nằm giữa 2 tia Ox và Oy
=> OI là pg của \(\widehat{xOy}\)
câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm
a: Ta có: ΔOAB cân tại O
mà OI là đường phân giác
nên OI là đường cao
b: XétΔOAB có
OI là đường cao
AD là đường cao
OI cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: Xét ΔOAB cân tại O có \(\widehat{AOB}=60^0\)
nên ΔOAB đều
=>\(OC=\dfrac{2}{3}OI=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{2}{3}\cdot\dfrac{6\sqrt{3}}{2}=2\sqrt{3}\left(cm\right)\)
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOH}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
b)
Xét ΔOAB có OA=OB(gt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Xét ΔAHB vuông tại H và ΔBKA vuông tại K có
BA chung
\(\widehat{ABH}=\widehat{BAK}\)(hai góc ở đáy của ΔOAB cân tại O)
Do đó: ΔAHB=ΔBKA(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{HAB}=\widehat{KBA}\)(hai góc tương ứng)
hay \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIBA có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIBA cân tại I(Định lí đảo của tam giác cân)
Suy ra: IA=IB(hai cạnh bên)
Xét ΔOIA và ΔOIB có
OI chungIA=IB(cmt)
OA=OB(Gt)
Do đó: ΔOIA=ΔOIB(c-c-c)
Suy ra: \(\widehat{AOI}=\widehat{BOI}\)(hai góc tương ứng)
hay \(\widehat{xOI}=\widehat{yOI}\)
mà tia OI nằm giữa hai tia Ox, Oy
nên OI là tia phân giác của \(\widehat{xOy}\)(đpcm)