Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AOM và tam giác BOM có:
AO = BO (gt)
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AOM = Tam giác BOM (c.g.c)
=> AM = BM (2 cạnh tương ứng)
=> M là trung điểm của AB
=> OM là đường trung tuyến của tam giác OAB cân tại O (OA = OB)
=> OM là đường trung trực của tam giác OAB cân tại O
=> OM _I_ AB
Tam giác NAB có NA vừa là đường cao, vừa là đường trung trực
=> Tam giác NAB cân tại N
=> NA = NB
a, Xét tam giác OAM và tam giác OBM có:
OA = OB (gt)
Góc AOM = góc BOM
OM chung
=> tam giác OAM = tam giác OBM
b, tam giác OAM = tam giác OBM ( câu a )
=> AM = BM
GÓC BMO = GÓC AMO
Mà góc BMO + góc AMO = 180 độ
=> OM vuông góc với AB
c, Từ câu b ta có OM là trung trực của AB
d, Xét tam giác MNB và tam giác MNA có:
MB = MA
góc BMN = góc AMN ( 90 độ)
MN chung
=> tam giác MNB = tam giác MNA
=> NA = NB
a: Xét ΔOEI và ΔOFI có
OE=OF
\(\widehat{IOE}=\widehat{IOF}\)
OI chung
Do đó: ΔOEI=ΔOFI