\(\alpha\).Rút gọn biểu thức: \(\sin^6\alp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2014

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^2+\left(cos^2\right)^2-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\)

\(=1-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.\left(1-sin^2\alpha\right)+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(=1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-1+sin^2\alpha\)

\(=0\)

29 tháng 10 2018

\(\sin^6a+\cos^6a+3\sin^2a-\cos^2a\\ =\sin^6a+3\sin^2\cos^2\left(\sin^2a+\cos^2a\right)+\cos^6a-3\sin^2a\cos^2a\left(\sin^2a+\cos^2a\right)+3\sin^2a-\cos^2a\\ =\left(\sin^2a+\cos^2a\right)^3-3\sin^2a.\cos^2a.1+3\sin^2a-cos^2a\\ =1^3-\cos^2a+3\sin^2a-3\sin^2\cos^2\\ =\left(1-\cos^2a\right)\left(3\sin^2a+1\right)\)

31 tháng 7 2017

=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a

=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa

=sina+cosa-cosa

=sina

7 tháng 9 2016

\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha=3sin^2\alpha\left(1-cos^2\alpha\right)+\left(1-cos^2\alpha\right)\)

\(=\left(3sin^2\alpha+1\right).sin^2\alpha=0\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2018

Bài 1:

Ta có:

\(A=\sin ^6a+\cos ^6a+3\sin ^2a\cos ^2a\)

\(=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a\)

\(=(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+3\sin ^2a\cos ^2a\)

\(=\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a+3\sin ^2a\cos ^2a\)

\(=\sin ^4a+2\sin ^2a\cos ^2a+\cos ^4a\)

\(=(\sin ^2a+\cos ^2a)^2=1^2=1\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2018

Lời giải:

Xét tam giác $ABC$. Gọi cạnh $AB, AC$ là $a,b$ và góc \(\widehat{BAC}=\alpha\)

Kẻ đường cao $BH$ của tam giác $ABC$

Khi đó:

\(S=\frac{BH.AC}{2}\)

Mặt khác, theo công thức lượng giác:

\(\frac{BH}{AB}=\sin \widehat{BAC}=\sin \alpha\Rightarrow BH=\sin \alpha.AB\)

Do đó: \(S=\frac{BH.AC}{2}=\frac{\sin \alpha.AB.AC}{2}=\frac{\sin \alpha.a.b}{2}\) (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
\(A=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a(\sin ^2a+\cos ^2a)\)

\(=(\sin ^2a+\cos ^2a)^3=1^3=1\)

\(B=(\cos ^2a+\sin ^2a-2\sin a\cos a)+(\cos ^2a+\sin ^2a+2\sin a\cos a)\)

\(=(1-2\sin a\cos a)+(1+2\sin a\cos a)=2\)

\(C=\frac{(\cos ^2a+\sin ^2a-2\sin a\cos a)-(\cos ^2a+\sin ^2a+2\sin a\cos a)}{\sin a\cos a}=\frac{(1-2\sin a\cos a)-(1+2\sin a\cos a)}{\sin a\cos a}\)

$=\frac{-4\sin a\cos a}{\sin a\cos a}=-4$