Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)
\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)
\(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có
a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)+ \(\frac{AC^2}{BC^2}\)= \(\frac{BC^2}{BC^2}\)=1
b,\(\frac{\sin\alpha}{\cos\alpha}\)= \(\frac{AB}{BC}\): \(\frac{AC}{BC}\)= \(\frac{AB}{AC}\)= \(\tan\alpha\)
#mã mã#
\(\frac{\cos a-\sin a}{cosa+sina}=\frac{\frac{cosa}{cosa}-\frac{sina}{cosa}}{\frac{cosa}{cosa}+\frac{sina}{cosa}}\)(chia ca tu va mau cho cosa)
\(=\frac{1-tana}{1+tana}=vt\left(dpcm\right)\)
help me please