K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

a) ta co goc: 
+)10π/3 = 12π/3 - 2π/3 = 4π - 2π/3 
+)22π/3 = 24π/3 - 2π/3 = 8π - 2π/3 

cac goc nay co cung tia dau; 
tia cuoi cu sau 1 vong tron luong giac (la 2π) thi tro lai nguyen vi tri cu 
tuong tu sau k lan (tuc la k2π ) thi tia cuoi cua no lai tro lai vi tri cu thôi 

trong bai: 10π/3 = 4π - 2π/3 : sau 2 vong tron luong giac thi tia cuoi ve vi tri -2π/3 
22π/3 = 8π - 2π/3 : sau 4 vong tron luong giac thi tia cuoi ve vi tri -2π/3 
(so voi tia đầu) 
nhu vay hai góc lượng giác có cùng tia đầu và có số đo là 10π/3 và 22π/3 thì có cùng tia cuối 

 

28 tháng 3 2016

b) khó 

10 tháng 4 2016

lam sao de ghi do

 

NV
20 tháng 4 2020

\(-\frac{2\pi}{3}< \frac{\pi}{4}+\frac{k\pi}{3}< \frac{5\pi}{6}\)

\(\Leftrightarrow-\frac{11}{12}< \frac{k}{3}< \frac{7}{12}\)

\(\Leftrightarrow-\frac{11}{4}< k< \frac{7}{4}\)

\(\Rightarrow k=\left\{-2;-1;0;1\right\}\)

Có 4 điểm biểu diễn

NV
8 tháng 5 2019

Bạn lấy 2 cung trừ đi nhau, cái nào ra kết quả là 1 số chẵn lần \(\pi\) (âm dương đều được) thì đó chính là đáp án cần tìm

Nhìn vào thấy ngay ở câu D ta có \(\frac{\pi}{4}-\left(-\frac{7\pi}{4}\right)=2\pi\) nên D là đáp án đúng

8 tháng 5 2019

cảm ơn bạn nhiều

14 tháng 6 2020

a, \(sin\alpha=\frac{1}{5},\frac{\pi}{2}< \alpha< \pi\)

+) \(sin^2\alpha+cos^2\alpha=1\)

\(\Leftrightarrow\left(\frac{1}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos^2\alpha=\frac{24}{25}\Leftrightarrow cos\alpha=\pm\frac{2\sqrt{6}}{5}\)

\(\frac{\pi}{2}< \alpha< \pi\Rightarrow cos\alpha=-\frac{2\sqrt{6}}{5}\)

+) \(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\frac{1}{5}}{-\frac{2\sqrt{6}}{5}}=-\frac{\sqrt{6}}{12}\)

+) \(cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac{-\frac{2\sqrt{6}}{5}}{\frac{1}{5}}=-2\sqrt{6}\)

NV
28 tháng 4 2020

a/ \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)

\(tanx=\frac{sinx}{cosx}=-\frac{\sqrt{6}}{12}\) ; \(cotx=\frac{1}{tanx}=-2\sqrt{6}\)

b/ \(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\)

\(\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{5\sqrt{26}}{26}\)

\(sina=tana.cosa=-\frac{\sqrt{26}}{26}\)

c/ \(0< a< \frac{\pi}{2}\Rightarrow sina;cosa>0\)

\(\left\{{}\begin{matrix}cos^2a+sin^2a=1\\2sina.cosa=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow sina+cosa=\frac{\sqrt{15}}{3}\Rightarrow cosa=\frac{\sqrt{15}}{3}-sina\)

\(\Rightarrow sina\left(\frac{\sqrt{15}}{3}-sina\right)=\frac{1}{3}\Rightarrow sin^2a-\frac{\sqrt{15}}{3}sina+\frac{1}{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=\frac{\sqrt{15}+\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}-\sqrt{3}}{6}\\sina=\frac{\sqrt{15}-\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}+\sqrt{3}}{6}\end{matrix}\right.\) \(\Rightarrow tana=\frac{sina}{cosa}=...\)

d/ \(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)

\(cosa=\sqrt{2}-sina\) \(\Rightarrow sin^2a+\left(\sqrt{2}-sina\right)^2=1\)

\(\Leftrightarrow2sin^2a-2\sqrt{2}sina+1=0\Rightarrow sina=\frac{\sqrt{2}}{2}\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{2}}{2}\)

\(tana=\frac{sina}{cosa}=-1\)