\(\alpha\),biết:sin\(\alpha\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Ta có:

+/ \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\dfrac{9}{25}+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=\dfrac{16}{25}\)

\(\Rightarrow\cos\alpha=\dfrac{4}{5}\)

+/ \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}}=\dfrac{3}{4}\)

+/ \(\tan\alpha.\cot\alpha=1\)

\(\Rightarrow\dfrac{3}{4}.\cot\alpha=1\)

\(\Rightarrow\cot\alpha=\dfrac{4}{3}\)

Vậy \(\cos\alpha=\dfrac{4}{5}\), \(\tan\alpha=\dfrac{3}{4}\), \(\cot\alpha=\dfrac{4}{3}\)

23 tháng 8 2017

Ta có:

\(\hept{\begin{cases}cosa-sina=\frac{1}{5}\\sin^2a+cos^2a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}cosa=\frac{1}{5}+sina\left(1\right)\\sin^2a+\left(\frac{1}{5}+sina\right)^2=1\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow25sin^2a+5sina-12=0\)

\(\Leftrightarrow\orbr{\begin{cases}sina=-\frac{4}{5}\left(l\right)\\sina=\frac{3}{5}\end{cases}}\)

\(\Rightarrow cosa=\frac{4}{5}\)

\(\Rightarrow\hept{\begin{cases}tana=\frac{3}{4}\\cota=\frac{4}{3}\end{cases}}\)

22 tháng 8 2017

Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu

Chim vẫn reo ca và môi hôn đang đứng đợi

Hoa vẫn nở và xuân thì đương tới

Hãy trải lòng xao xuyến với tình yêu.

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)

1 tháng 7 2018

a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)

\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)

b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

2 tháng 7 2018

thank

24 tháng 10 2017

2. \(\left(\sin a+\cos a\right)^2+\left(\sin a-\cos a\right)^2+2\)

\(=\sin^2a+2.\sin a.\cos a+\cos^2a+\sin^2a\cdot2.\sin a.\cos a+\cos^2a+2\)

\(=2\sin^2a+2\cos^2a+2\)

\(=2\left(\sin^2a+\cos^2a\right)+2\)

\(=2.1+2=4\)

=> biểu thức trên ko phụ thuộc vào a

24 tháng 10 2017

1. a.) \(\cot a=\dfrac{1}{\tan a}=\dfrac{1}{\sqrt{3}}\)

\(\tan\sqrt{3}=60\Rightarrow a=60^o\)

\(\sin60=\dfrac{\sqrt{3}}{2}\)

\(\cos60=\dfrac{1}{2}\)

b.) \(\cos^2a=1-\left(\dfrac{15}{17}\right)^2=\dfrac{64}{289}\Rightarrow\cos a=\dfrac{8}{17}\)

\(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{15}{17}}{\dfrac{8}{17}}=\dfrac{15}{17}.\dfrac{17}{8}=\dfrac{15}{8}\)

16 tháng 7 2018

Ta có:

\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)

Dùng cái này làm được hết mấy câu đó.

16 tháng 7 2018

nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .