Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
theo bài ra ta có góc A=180/10*3=54độ góc B=180/10*5 =90 độ góc C=180-90-54=36 độ suy ra tam giác ABC cân tại B
VÌ MB và NB LÀ tiếp tuyến suy ra tam giác BMN là tam giác cân suy ra góc BNM=BMN=180-GOCSB=[180-90]/2=45 độ
tương tự đối với tam giác CNP có gócPNC=NPC=180-gócC=[180-36]/2=72 độ
do đó góc MNP=180-MNB-PNC=180-45-72=63 độ
a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)
=> tứ giác AOMC nội tiếp đường tròn đường kính OC
tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)
=> tứ giác BOMD nội tiếp đường tròn đường kính OD
ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)
\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )
=>\(\widehat{OBM}=\widehat{AOC}\)
=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)
=>\(OC\perp OD\)(dpcm)
ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )
\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)
\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)
zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM
b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)
mà tam giác DBM cân tại D ( t/c 2 tiếp tuyến cát nhau )
=> tam giác DBM đều (dpcm)
+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )
gọi S là diện tích cần tìm
\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )
Gỉa sử \(\Delta ABC\) có \(AB=3AC;\widehat{A}=90^0\)
Khi đó \(S\Delta ABC=\frac{1}{2}.AB.AC=\frac{1}{2}.AB.\frac{1}{3}.AB=24\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)
\(\Rightarrow AC=4\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+4^2}=4\sqrt{10}\left(cm\right)\)
Gọi cạnh góc vuông nhỏ là x (cm,x>0)
=> cạnh góc vuông lớn là 3x(cm)
Diện tích là 24 \(cm^2\)nên ta có : \(\frac{3x.x}{2}\)= 24 => x=4 (TMĐK)
=> cạnh góc vuông lớn là 12cm
Vậy số đo cạnh huyền là \(4\sqrt{10}\)cm
câu 1 sử dụng tính chất góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung là xong nhé
kẻ IK vuông góc với DG và DG cắt đường tròn ngoại tiếp tam giác DFM tại P ==> P là điểm chính giữa cung DF
vì IG vuông góc với DC==> IG // BC
do đó giờ cần chứng minh góc DIG=DBC ( 2 góc đồng vị là ra D;I;B thẳng hàng)
ta có góc DIG=cung DP
góc DMF=1/2cung DF
MÀ cung DP=1/2cung DF( VÌ P là ĐIỂM CHÍNH GIỮA CUNG DF)
==> DIG=DMF
mà góc DMF=DMC( 2 góc nội tiếp cùng chắn 1 cung)
==> góc DIP=DBC
mà DBC+GIB=180 độ==> DIG+GIB=180 độ
==> D;I;B thẳng hàng
a)fac=amo,emo=fca=90 =>efm=emf=>em=ef
b)*dci+dic+idc+ibc+icb+cib=360 mà dci+icb=90;idc+ibc=90 =>dic+cib=180 =>3 diem thang hang
dci+idc+dic=180;cib+icb+ibc=180
*abi=cung ad/2 mà c ko doi =>d ko doi=>ad ko doi=>abi ko doi