K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

a) Ta có A O N ^ + B O N ^ = 180 ° ; B O M ^ + A O M ^ = 180 ° (hai góc kề bù) mà A O M ^ = B O N ^ (đề bài cho) nên A O N ^ = B O M ^ .

Mặt khác, tia OC là tia phân giác của góc MON nên C O N ^ = C O M ^ .

Do đó   A O N ^ + C O N ^ = B O M ^ + C O M ^        (1)

Ta có tia ON nằm giữa hai tia OA, OC; tia OM nằm giữa hai tia OB, OC nên từ (1) suy ra A O C ^ = B O C ^ = 180 ° : 2 = 90 ° . Vậy  O C ⊥ A B .

b) Tia OM nằm giữa hai tia OB và ON nên   B O M ^ + M O N ^ = B O N ^ = m °    (1).

Mặt khác B O M ^ = 180 ° − A O M ^ = 180 ° − m °                   (2).

Từ (1) và (2) suy ra: 180 ° − m ° + 90 ° = m ° ⇒ 2 m ° = 270 ° ⇒ m ° = 135 ° .

Vậy m = 135 .

Ÿ Chứng minh một tia là tia phân giác, là tia đối