Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tia OM là tia phân giác của góc AOB nên
A
O
M
^
=
B
O
M
^
=
120
°
:
2
=
60
°
.
Ta có O C ⊥ O B ⇒ B O C ^ = 90 ° .
Tia OM nằm giữa hai tia OB, OC nên B O M ^ + C O M ^ = B O C ^
⇒ C O M ^ = 90 ° − 60 ° = 30 °
Tia OC nằm giữa hai tia OA, OB nên A O C ^ + B O C ^ = A O B ^
⇒ A O C ^ = 120 ° − 90 ° = 30 °
Vậy A O C ^ = C O M ^ = 30 ° . (1)
Tia OC nằm giữa hai tia OA, OM nên từ (1) suy ra tia OC là tia phân giác của góc AOM.
b) Ta có O M ⊥ O N ⇒ M O N ^ = 90 ° .
Tia OA nằm giữa hai tia ON, OM nên A O N ^ + A O M ^ = M O N ^ .
Suy ra A O N ^ = M O N ^ − A O M ^ = 90 ° − 60 ° = 30 ° .
Vậy A O N ^ = A O C ^ = 30 ° (2)
Tia OA nằm giữa hai tia ON, OC nên từ (2) suy ra tia OA là tia phân giác của góc CON.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì OA' là tia đối của tia OA (gt)
OB' là tia đối của tia OB (gt)
⇒ ∠AOB = ∠A'OB'
Mà OM là tịa phân giác ∠AOB (gt)
⇒ ∠AOM = ∠AOB/2
Vì ON là tia phân giác của ∠A'OB' (gt)
⇒ A' A'OB' / 2
Mà ∠AOB = ∠A'OB' (cmt)
⇒ ∠AOB /2= ∠A'OB'/2
⇒ ∠AOM = ∠A'ON
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có O M ⊥ O N ⇒ M O N ^ = 90 ° .
Tia OM là tia phân giác của góc AOC nên A O M ^ = M O C ^ .
Tia ON là tia phân giác của góc BOC nên B O N ^ = N O C ^ .
Xét tổng
A O C ^ + B O C ^ = 2 M O C ^ + 2 N O C ^ = 2 M O C ^ + N O C ^ = 2 M O N ^ = 2.90 ° = 180 ° .
Hai góc kề AOC và BOC có tổng bằng nên hai tia OA, OB đối nhau.
Đường trung trực – Hai góc có cạnh tương ứng vuông góc
![](https://rs.olm.vn/images/avt/0.png?1311)
A O B C A' B' C'
CC' cắt BB'=>BOC=B'OC'
AA' cắt CC'=>AOC=A'OC'
OA và OA' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB nằm trên cùng 1 nửa mặt phẳng bờ CC'
OB và OB' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ OC'
=>OC' nằm giữa OA' và OB'
mà A'OC'=C'OB'=>OC' là tia phân giác của A'OB'
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì Oa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90oOa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90o
Ta có: xOa + aOy = xOy
=> 90o + aOy = xOy (1)
Lại có: xOb + bOy = xOy
=> xOb + 90o = xOy (2)
Từ (1) và (2) => aOy = xOb
b) Vì Om là phân giác của aOb nên bOm=mOa=aOb2bOm=mOa=aOb2
Lại có: aOy = xOb (theo câu a)
=> aOy + mOa = bOm + xOb
=> mOy = xOm
=> Om là tia phân giác của aOb (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
* Tìm cách giải
Muốn chứng tỏ tia OK là tia phân giác của góc AOB ta cần chứng tỏ A O K ^ = B O K ^ . Muốn vậy cần chứng tỏ A O N ^ + N O K ^ = B O M ^ + M O K ^ .
* Trình bày lời giải
Ta có O M ⊥ O A ⇒ A O M ^ = 90 ° ; O N ⊥ O B ⇒ B O N ^ = 90 ° .
Tia ON nằm giữa hai tia OA, OM nên A O N ^ + N O M ^ = A O M ^ = 90 ° ;
Tia OM nằm giữa hai tia OB, ON nên B O M ^ + M O N ^ = B O N ^ = 90 ° .
Suy ra A O N ^ = B O M ^ (cùng phụ với M O N ^ ).
Tia OK là tia phân giác của góc MON nên N O K ^ = M O K ^ .
Do đó A O N ^ + N O K ^ = B O M ^ + M O K ^ .(1)
Vì tia ON nằm giữa hai tia OA, OK và tia OM nằm giữa hai tia OB, OK nên từ (1) suy ra A O K ^ = B O K ^ . Mặt khác, tia OK nằm giữa hai tia OA, OB nên tia OK cũng là tia phân giác của góc AOB