K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Chọn A.

Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)

Ta có (sin α + cos α) 2 = sin2α + cos2α +  2sinα.cosα = 1 + 24/25 = 49/25.

Vì sin α + cosα > 0  nên ta chọn sinα + cosα = 7/5.

Thay  vào P ta được 

22 tháng 4 2018

Chọn D.

Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α +  cos2α)  = 2.

Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.

Do  suy ra sinα < cosα  nên sinα - cosα <  0.

Vậy 

20 tháng 4 2017

Chọn C.

Ta có 

24 tháng 8 2019

Chọn A.

Ta có 

Khi đó 

Do đó, 

15 tháng 12 2017

Chọn C.

Ta có 

Thay α = π vào P  ta được 

3/4pi<a<pi

=>sin a>0; cosa<0

sin2a=-4/5

=>2*sina*cosa=-4/5

=>sina*cosa=-2/5

(sina-cosa)^2=sin^2a+cos^2a-2*sina*cosa=1+4/5=9/5

=>sin a-cosa=3/căn 5

23 tháng 1 2018

Chọn D.

Ta có 

Thay  vào P  ta được .

7 tháng 9 2018

Chọn D.

Xét biểu thức (sin⁡ α - cosα ) 2  + (sin⁡ α + cosα ) 2  ta có:

(sin⁡ α - cosα ) 2  + (sin⁡ α + cosα ) 2

=  sin 2 α  - 2sin⁡ α.cosα +  cos 2 α  +  sin 2 α  + 2 sin⁡ α.cosα +  cos 2 α

= 2( sin 2 α  +  cos 2 α ) =2

⇒ (sin⁡ α - cosα ) 2  = 2 - (sin⁡ α + cosα ) 2

Đề kiểm tra 15 phút Đại số 10 Chương 6 có đáp án (Đề 2)

Đề kiểm tra 15 phút Đại số 10 Chương 6 có đáp án (Đề 2)

23 tháng 8 2019

Chọn A.

Ta có 3cosα+ 2sinα = 2  hay (3cosα+ 2sinα = 2 )= 4

Tương đương: 9 cos2 α + 12 cosα .sin α + 4sin2α = 4

Hay 5cos2α +  12 cosα .sin α = 0

Từ đó: cosα= 0 hoặc 5cosα + 12 sinα = 0

+ Nếu cosα = 0 thì sinα =1: loại ( vì sinα < 0).

+ 5cosα + 12 sinα = 0 

ta có hệ phương trình 

 

27 tháng 2 2018

Chọn C.

Ta có