Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(g\left(x\right)=\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}:x^{2015}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\left(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}\right)\cdot x^{2015}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{x^{2015}}{x}+\frac{x^{2015}}{x^2}+\frac{x^{2015}}{x^3}+...+\frac{x^{2015}}{x^{2014}}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{x^{2014}+x^{2013}+x^{2012}+...+x}\right]\cdot x^{2015}\)
\(=1\cdot x^{2015}=x^{2015}\)
\(\Rightarrow g\left(2014\right)=2014^{2015}=\left(...14\right)^{10^{201}}\cdot\left(...14\right)^5=\left(...76\right)\cdot\left(...24\right)=\left(...24\right)\)
Vậy chữ số hàng đơn vị của g ( 2014 ) là 4. còn chữ số hàng chục của g ( 2014 ) là 2.
Gọi chữ số hàng chục và hàng đơn vị của số đó lần lượt là a và b (Tự đặt ĐK nha)
Theo đề ta có hpt: \(\hept{\begin{cases}a+b=11\\10a+b+27=10b+a\end{cases}}\)<=> \(\hept{\begin{cases}a+b=11\\a-b=-3\end{cases}}\)<=> \(\hept{\begin{cases}2b=14\\a-b=-3\end{cases}}\)<=> \(\hept{\begin{cases}b=7\\a=4\end{cases}}\)(TM)
Vậy số đó là 47
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
quy đồng H lên rồi rút gọn
sau ko rút gọn xong thì tìm x nguyên khi H=6