Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)
Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
mà HB+HC=BC=25
nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot HC=12^2=144\)
mà HB+HC=25
nên HB,HC lần lượt là các nghiệm của phương trình sau:
\(x^2-25x+144=0\)
=>\(x^2-9x-16x+144=0\)
=>x(x-9)-16(x-9)=0
=>(x-9)(x-16)=0
=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)
mà BH<HC
nên BH=9cm; CH=16cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)
b: ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)
=>\(\widehat{AMH}\simeq73^044'\)
c: ΔAHM vuông tại H
=>\(AH^2+HM^2=AM^2\)
=>\(HM^2=12,5^2-12^2=12,25\)
=>HM=3,5(cm)
\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)