K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 9 2019

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=9\Rightarrow x+y+z\ge3\)

\(P=\sum\frac{x^2}{\sqrt{x^3+8}}=\sum\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\sum\frac{2x^2}{x^2-x+6}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+6-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}-1+1\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2+\left(x+y+z\right)-12}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1=\frac{\left(x+y+z-3\right)\left(x+y+z+4\right)}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1\)

Do \(x+y+z-3\ge0\Rightarrow P\ge1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

26 tháng 9 2019

Èo, thé này mà sang giờ em nghĩ mãi ko ra:(

12 tháng 1 2021

2. \(|x| +|x-1| ≤ 5 \\ \Leftrightarrow |x| + |x-1| ≤ \dfrac{5}{2}\)

 \(-∞\)\(0\)\(1\)           \(+∞\)
\(|x|\)               \(-x\)        \(x\)            \(x\)\(x\)
\(|x-1|\)             \(1-x\)      \(1-x\)         \(x-1\)\(x-1\)
\(|x|+|x-1|\)           \(1-2x\)         \(1\)       \(2x-1\)\(2x-1\)

TH1: \(1-2x ≤ \dfrac{5}{2} \Leftrightarrow x ≥ \dfrac{-3}{4}\)

TH2: \(2x-1 ≤ \dfrac{5}{2} \Leftrightarrow x ≤ \dfrac{7}{4}\) 

Vậy....

NV
18 tháng 9 2021

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai

8 tháng 2 2018

\(\left|x\right|+x=0\)

\(\Leftrightarrow\left|x\right|=-x\)

\(\Leftrightarrow x\le0\)

Vậy ...

8 tháng 2 2018

Ta có: \(\left|x\right|+x=0\)

\(-x+x=0\Rightarrow\left|x\right|=-x\)

\(\Leftrightarrow x\le0\)

Vậy \(x\le0\)

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)