K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

\(G< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

\(G< \frac{1-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{200-199}{199.200}\)

\(G< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(G< 1-\frac{1}{200}< 1\)

5 tháng 8 2015

Có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}

5 tháng 8 2015

Vì \(\frac{1}{101}>\frac{1}{102}>...>\frac{1}{200}\) Nên A<\(\frac{1}{101}+\frac{1}{101}+....+\frac{1}{101}\)(100 số hạng ) \(=100.\frac{1}{101}=\frac{100}{101}

19 tháng 8 2015

\(\frac{1}{2\times2}+\frac{1}{3\times3}+....+\frac{1}{20\times20}

19 tháng 8 2015

                          

28 tháng 4 2018

Bài làm

Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90 
       M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
      M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
     M< 1-1/10 < 9/10      (1)
     Vì 9/10 < 1    (2)
     Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1

2 tháng 7 2016

Giải:

Nên ta phải chứng minh:

=> ( điều phải chứng minh)

2 tháng 7 2016

Nên ta phải chứng minh:

=> ( điều phải chứng minh)